首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1608篇
  免费   52篇
  国内免费   2篇
化学   1062篇
晶体学   6篇
力学   19篇
数学   224篇
物理学   351篇
  2024年   3篇
  2023年   13篇
  2022年   56篇
  2021年   49篇
  2020年   40篇
  2019年   43篇
  2018年   30篇
  2017年   29篇
  2016年   78篇
  2015年   50篇
  2014年   64篇
  2013年   65篇
  2012年   125篇
  2011年   147篇
  2010年   113篇
  2009年   67篇
  2008年   100篇
  2007年   138篇
  2006年   77篇
  2005年   66篇
  2004年   53篇
  2003年   39篇
  2002年   28篇
  2001年   14篇
  2000年   10篇
  1999年   15篇
  1998年   9篇
  1997年   5篇
  1996年   12篇
  1995年   19篇
  1994年   20篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1973年   2篇
  1969年   2篇
  1968年   2篇
  1905年   3篇
  1904年   2篇
排序方式: 共有1662条查询结果,搜索用时 15 毫秒
61.
In this work, the isolation step in the linear ion trap was performed using different “q values” conditions at a low collision-induced dissociation (CID) energy leading to the parent ion resolution improvements, reasonably due to better ion energy distribution. According to the results, we obtained a greater resolution and mass accuracy operating in both traditional electrospray and low voltage ionization near the q value = 0.778 and with a CID energy of 10%. This effect was evaluated with low-molecular-mass compounds (skatole and arginine). The proposed optimization yielded a superior instrument performance without adding technological complexity to mass spectrometry analyses.  相似文献   
62.
Catechols are ubiquitous substances often acting as antioxidants, thus of importance in a variety of biological processes. The Fenton and Haber–Weiss processes are thought to transform these molecules into aggressive reactive oxygen species (ROS), a source of oxidative stress and possibly inducing degenerative diseases. Here, using model conditions (ultrahigh vacuum and single crystals), we unveil another process capable of converting catechols into ROSs, namely an intramolecular redox reaction catalysed by a Cu surface. We focus on a tri-catechol, the hexahydroxytriphenylene molecule, and show that this antioxidant is thereby transformed into a semiquinone, as an intermediate product, and then into an even stronger oxidant, a quinone, as final product. We argue that the transformations occur via two intramolecular redox reactions: since the Cu surface cannot oxidise the molecules, the starting catechol and the semiquinone forms each are, at the same time, self-oxidised and self-reduced. Thanks to these reactions, the quinone and semiquinone are able to interact with the substrate by readily accepting electrons donated by the substrate. Our combined experimental surface science and ab initio analysis highlights the key role played by metal nanoparticles in the development of degenerative diseases.

An antioxidant catechol transforms following intramolecular redox reactions into highly reactive oxygen species, a semiquinone and a quinone, on copper.  相似文献   
63.
Metalation of CH2OH-substituted triazolium salts with CoCl2 under basic conditions affords C,O-bidentate chelating carbene Co(III) complexes ( 3a , 3b ), while analogous phenyl-substituted triazolium salts produce monodentate carbene Co(II) complexes ( 3c , 3d ). The distinct substituent-induced properties of the metal centers were demonstrated by electrochemical measurements and catalytic activities in two specific processes. The complexes showed appreciable activity in the reduction of C=O bonds through hydrosilylation, with methoxybenzene-functionalized triazolylidene Co(III) complex 3a achieving a high selectivity towards aldehydes vs. ketones with turnover frequencies (TOFs) up to 200 h−1. The C,O-chelate systems were also active catalysts in the Biginelli process, a one-step three-component reaction for efficient dihydropyrimidinone synthesis. Optimization of reaction conditions provides high activity with complex 3a , reaching TOFs of 800 h−1, the highest activity known for cobalt NHC complexes to date.  相似文献   
64.
The 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-CoV-2 agents. The availability of resolved structures allows structure-based computational approaches to be carried out even though the lack of known inhibitors prevents a proper validation of the performed simulations. The innovative idea of the study is to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns. Docking simulations using four different programs (Fred, Glide, LiGen, and PLANTS) were performed investigating the role of both multiple binding modes (by binding space) and multiple isomers/states (by developing the corresponding isomeric space). The computed docking scores were used to develop consensus models, which allow an in-depth comparison of the resulting performances. On average, the reached performances revealed the different sensitivity to isomeric differences and multiple binding modes between the four docking engines. In detail, Glide and LiGen are the tools that best benefit from isomeric and binding space, respectively, while Fred is the most insensitive program. The obtained results emphasize the fruitful role of combining various docking tools to optimize the predictive performances. Taken together, the performed simulations allowed the rational development of highly performing virtual screening workflows, which could be further optimized by considering different 3CL-Pro structures and, more importantly, by including true SARS-CoV-2 3CL-Pro inhibitors (as learning set) when available.  相似文献   
65.
Following a similar approach on carvacrol-based derivatives, we investigated the synthesis and the microbiological screening against eight strains of H. pylori, and the cytotoxic activity against human gastric adenocarcinoma (AGS) cells of a new series of ether compounds based on the structure of thymol. Structural analysis comprehended elemental analysis and 1H/13C/19F NMR spectra. The analysis of structure–activity relationships within this molecular library of 38 structurally-related compounds reported that some chemical modifications of the OH group of thymol led to broad-spectrum growth inhibition on all isolates. Preferred substitutions were benzyl groups compared to alkyl chains, and the specific presence of functional groups at para position of the benzyl moiety such as 4-CN and 4-Ph endowed the most anti-H. pylori activity toward all the strains with minimum inhibitory concentration (MIC) values up to 4 µg/mL. Poly-substitution on the benzyl ring was not essential. Moreover, several compounds characterized by the lowest minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values against H. pylori were also tested in order to verify a cytotoxic effect against AGS cells with respect to 5-fluorouracil and carvacrol. Three derivatives can be considered as new lead compounds alternative to current therapy to manage H. pylori infection, preventing the occurrence of severe gastric diseases. The present work confirms the possibility to use natural compounds as templates for the medicinal semi-synthesis.  相似文献   
66.
After earlier unsuccessful attempts, this work reports the application of covalent templating for the synthesis of mechanically interlocked molecules (MiMs) bearing no supramolecular recognition sites. Two linear strands were covalently connected in a perpendicular fashion by a central ketal linkage. After subsequent attachment of the first strand to a template via temporary benzylic linkages, the second was linked to the template in a backfolding macrocyclization. The resulting pseudo[1]rotaxane structure was successfully converted to a [2]catenane via a second macrocyclization and cleavage of the ketal and temporary linkages.  相似文献   
67.
The purpose of this study is to investigate the influence of nickel, which is an alloying element in commonly used metallic biomaterials, on the biomaterials mineralization process. An electrochemical method was developed to quantify this metal ion in osteoblast-like cell culture medium (OST) by performing adsorptive cathodic stripping voltammetry (CSV) with dimethylglyoxime (DMG) at a mercury film microelectrode (MFM). The optimized analytical conditions and the square-wave CSV parameters for the analysis are: DMG concentration: 5.00 × 10−4 mol L−1; ammonium chloride buffer: 0.10 mol L−1 (pH 9.2); frequency: 50 Hz, amplitude 20 mV; step: 2 mV; adsorption time: 10 s, deposition potential: −0.70 V and reduction potential: −1.20 V. The limit of detection was 7.70 × 10−9 mol L−1 for an adsorption time of 10 s. The results achieved by CSV using the MFM were compared to those obtained by atomic absorption spectrometry (AAS) to ensure the reliability of the electrochemical method. The mineralization process was evaluated by biochemical and histochemical assays.  相似文献   
68.
Prunus mahaleb L. fruit has long been used in the production of traditional liqueurs. The fruit also displayed scavenging and reducing activity, in vitro. The present study focused on unravelling peripheral and central protective effects, antimicrobial but also anti-COVID-19 properties exerted by the water extract of P. mahaleb. Anti-inflammatory effects were studied in isolated mouse colons exposed to lipopolysaccharide. Neuroprotection, measured as a blunting effect on hydrogen-peroxide-induced dopamine turnover, was investigated in hypothalamic HypoE22 cells. Antimicrobial effects were tested against different Gram+ and Gram- bacterial strains. Whereas anti-COVID-19 activity was studied in lung adenocarcinoma H1299 cells, where the gene expression of ACE2 and TMPRSS2 was measured after extract treatment. The bacteriostatic effects induced on Gram+ and Gram- strains, together with the inhibition of COX-2, TNFα, HIF1α, and VEGFA in the colon, suggest the potential of P. mahaleb water extract in contrasting the clinical symptoms related to ulcerative colitis. The inhibition of the hydrogen peroxide-induced DOPAC/DA ratio indicates promising neuroprotective effects. Finally, the downregulation of the gene expression of ACE2 and TMPRSS2 in H1299 cells, suggests the potential to inhibit SARS-CoV-2 virus entry in the human host. Overall, the results support the valorization of the local cultivation of P. mahaleb.  相似文献   
69.
Spontaneous emissions of S. dentata Aiton and S. scabra Thunb., as well as the essential oil (EO) composition of the cited species, together with S. aurea L., were investigated. The chemical profile of the first two species is reported here for the first time. Moreover, in vitro tests were performed to evaluate the antifungal activity of these EOs on Trichophyton mentagrophytes, Microsporum canis, Aspergillus flavus, Aspergillus niger, and Fusarium solani. Secondly, the EO antibacterial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus pseudointermedius was examined, and their antiviral efficacy against the H1N1 influenza virus was assessed. Leaf volatile organic compounds (VOCs), as well as the EOs obtained from the arial part of Salvia scabra, were characterized by a high percentage of sesquiterpene hydrocarbons (97.8% and 76.6%, respectively), mostly represented by an equal amount of germacrene D (32.8% and 32.7%, respectively). Both leaf and flower spontaneous emissions of S. dentata, as well as the EO composition, showed a prevalence of monoterpenes divided into a more or less equal amount of hydrocarbon and oxygenated compounds. Interestingly, its EO had a non-negligible percentage of oxygenated sesquiterpenes (29.5%). S. aurea EO, on the contrary, was rich in sesquiterpenes, both hydrocarbons and oxygenated compounds (41.5% and 33.5%, respectively). S. dentata EO showed good efficacy (Minimal Inhibitory Concentration (MIC): 0.5%) against M. canis. The tested EOs were not active against E. coli and S. aureus, whereas a low inhibition of S. dentata EO was observed on S. pseudointermedius (MIC = 10%). Once again, S. dentata EO showed a very good H1N1 inhibition; contrariwise, S. aurea EO was completely inactive against this virus. The low quantity of S. scabra EO made it impossible to test its biological activity. S. dentata EO exhibited interesting new perspectives for medicinal and industrial uses.  相似文献   
70.
Tebuconazole is a widely used fungicide. The formation of by-products on irradiated titanium dioxide as a photocatalyst was evaluated. Several species derived from tebuconazole degradation were identified and characterized by HPLC/MS(n). A pattern of reactions accounting for the observed intermediates is proposed. Different parallel pathways are operating (and through these pathways the transformation of the molecule proceeds), leading to a wide range of intermediate compounds. All these molecules are more hydrophylic than tebuconazole. The main steps involved are (1) the hydroxylation of the molecule with the formation of three species having [M + H](+) 324; the hydroxylation occurs on the C-1 carbon and on the aromatic ring in the two ortho-positions; (2) the cleavage of a C--C bond with the release of the tert-butyl moiety and the formation of a species having m/z 250; analogously to step 1, also on this species a further hydroxylation reaction occurs; (3) through the loss of the triazole moiety with the formation of a structure with m/z 257.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号