首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1599篇
  免费   40篇
  国内免费   2篇
化学   1040篇
晶体学   19篇
力学   18篇
数学   191篇
物理学   373篇
  2024年   6篇
  2023年   11篇
  2022年   52篇
  2021年   55篇
  2020年   53篇
  2019年   52篇
  2018年   32篇
  2017年   22篇
  2016年   72篇
  2015年   44篇
  2014年   47篇
  2013年   59篇
  2012年   103篇
  2011年   123篇
  2010年   95篇
  2009年   63篇
  2008年   86篇
  2007年   127篇
  2006年   70篇
  2005年   50篇
  2004年   49篇
  2003年   32篇
  2002年   20篇
  2001年   11篇
  2000年   17篇
  1999年   14篇
  1998年   16篇
  1997年   12篇
  1996年   10篇
  1995年   16篇
  1994年   12篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   9篇
  1982年   5篇
  1981年   8篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1976年   5篇
  1968年   9篇
  1934年   5篇
  1930年   7篇
  1924年   5篇
  1922年   4篇
  1921年   5篇
  1885年   4篇
排序方式: 共有1641条查询结果,搜索用时 15 毫秒
31.
32.
Synthesis and Structure of the Basic Alkaline Earth Nitrates Sr2(OH)3NO3 and Ba2(OH)3NO3 Sr2(OH)3NO3 and Ba2(OH)3NO3 were synthesized from mixtures of freshly prepared strontium or barium hydroxides and their corresponding nitrates in evacuated quartz glass ampoules at 420 °C and 360 °C, respectively. Single crystals of Sr2(OH)3NO3 were obtained in a solidified Sr(NO3)2 melt after subsequent heating and cooling cycles in air up to 600 °C. The crystal structure of the strontium compound was refined from single crystal and powder X‐ray data. Sr2(OH)3NO3 crystallizes hexagonally in the space group (No. 189) with Z = 1 and the lattice parameters a = 6.624(2) Å and c = 3.560(1) Å (single crystal data). The powder pattern of Ba2(OH)3NO3 was indexed isotypically to Sr2(OH)3NO3 with the lattice parameters a = 6.9260(1) Å and c = 3.8086(1) Å, and the crystal structure was refined from powder X‐ray data. Alkaline earth ions in the structures are surrounded trigonal‐prismatically by six hydroxide ions. These prisms are sharing their trigonal faces along [001] building up columns. These columns are connected in the ab‐plane by shared edges, and form hexagonal tunnels with the nitrate groups stacked inside. Infrared and thermoanalytical data of Sr2(OH)3NO3 are presented.  相似文献   
33.
Determination of the Chirality Sense of the Enantiomeric 2,6-Adamantanediols The enantiomers of 2,6-adamantanediol ( 1 ) are resolved via the diastereoisomeric camphanoates. The (2R,6R)-chirality sense for (?)- 1 and (2S,6S) for (+)- 1 was determined by chemical correlation with (?)-(1R,5R)-bicyclo[3.3.1]nonan-2,6-dion ((1R,5R)- 3 ) of known absolute configuration in the following way: alkylation of the bis(pyrrolidine enamine) of (?)-(1R,5R)- 3 with CD2I2 and hydrolysis of the product gives the enantiomer 4 of (4,4-D2)-2,6-adamantanedione. Reduction of 4 with LiAlH4 leads to one enantiomer (Scheme 2) of each of the three diols 5 – 7 of known absolute configuration. The three diols are themselves configurational isomers due to the presence of the CD2 group, but correspond otherwise entirely to the enantiomeric diols 1 . Accordingly, they can also be separated by means of their diastereoisomeric camphanoates to give the diols 5 / 6 and 7 . These samples are easily distinguished and identified by their characteristic 1H-NMR spectra (cf. Fig. 2). This allows to identify the (2R,6R)- and (2S,6S)-enantiomer of 1 on the basis of their behavior in the resolution experiment analogous to that of the diols 5 / 6 and 7 , respectively. The diol (?)- 1 must have the (2R,6R)-configuration because it forms, like the diols 5 / 6 , with (?)-camphanic acid the diastereoisomeric ester less soluble in benzene. The diol (+)- 1 has (2S,6S)-configuration, because it forms, like 7 , with (+)-camphanic acid the diastereoisomeric ester less soluble in benzene. The bis(4-methoxybenzoate) of (?)-(2R,6R)- 1 shows chiroptical properties which are in accordance with Nakanishi's rule for two chromophores having coupled electric dipol transition moments arranged with a left-handed torsion angle.  相似文献   
34.
Cooperativity in ionic liquids is investigated by means of static quantum chemical calculations. Larger clusters of the dimethylimidazolium cation paired with a chloride anion are calculated within density functional theory combined with gradient corrected functionals. Tests of the monomer unit show that density functional theory performs reasonably well. Linear chain and ring aggregates have been considered and geometries are found to be comparable with liquid phase structures. Cooperative effects occur when the total energy of the oligomer differs from a simple sum of monomer energies. Cooperative effects have been found in the structural motifs examined. A systematic study of linear chains of increasing length (up to nine monomer units) has shown that cooperativity plays a more important role than expected and is stronger than in water. The Cl...H distance of the chloride to the most acidic proton increases with an increasing number of monomer units. The average bond distance approaches 218.9 pm asymptotically. The dipole moment grows almost linearly and the dipole moment per monomer unit reaches the asymptotic value of 16.3 D. The charge on the chloride atoms decreases with an increasing chain length. In order to detect local hydrogen bonding in the clusters a new parametrization of the shared-electron number method is introduced. We find decreasing hydrogen bond energies with an increasing cluster size for both the first hydrogen bond to the most acidic proton and the average hydrogen bond.  相似文献   
35.
Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol−1 were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information.

A machine learning model for enantioselectivity prediction using reaction-based molecular representations.  相似文献   
36.
Photoionization cross sections for the production of the doubly charged ion N2+ from N2 have been measured by means of synchrotron radiation in the photon energy range from 50 to 110 eV. The appearance energy for N2+ has been determined as 55.2+/-0.2 eV, i.e., about 1.3 eV higher than the spectroscopic dissociation limit leading to the charge asymmetric dissociation channel N2+(2P)+N(4S) at 53.9 eV. The onset of a second threshold at 59.9+/-0.2 eV is detected and the energy dependence of photoion intensities near the threshold regions is interpreted in terms of the Wannier theory. The production of the N2+ dication is discussed in terms of direct and indirect mechanisms for dissociative charge asymmetric photoionization and by comparison with the potential energy curves of the intermediate N(2)2+ dication. Experimental evidences for the opening of the Coulomb explosion channel N2++N+ at high photon energies are provided by measuring the kinetic energy release spectra of N2+ fragments at selected photon energies.  相似文献   
37.
Molecular mechanics (MM2) calculations were performed on 54 conformations of 18 phosphines (PH3; PH3−nRn, where n = 1,…3, and R = Me and Et, n = 1 or 2 and R =iPr, and n = 1 and R =tBu, PMe2Et, PMeEt2, and PPhMe2, and PPh2R where R = Me, Et, iPr, tBu and Ph). The results are compared to those previously obtained from MINDO/3 and MNDO calculations, and to experimental data. Single conformer cone angles and weighted average cone angles were calculated from MM2 optimized geometries employing Tolman's general definition, and they are compared to Tolman's values, MINDO/3 results, and T.L. Brown's ER values. Of the cone angle definitions used, the weighted average values are suggested as the best single representation of phosphine ligand sizes. The steric parameters (cone angle and ER values) alone, and in conjunction with electronic parameters, are correlated with experimental data.  相似文献   
38.
This report describes the synthesis and characterization of metal halide complexes (M = Mn, Fe, Co) supported by a new family of pendant donor-modified alpha-diimine ligands. The donor (N, O, P, S) substituent is linked to the alpha-diimine by a short hydrocarbon spacer forming a tridentate, mer-coordinating ligand structure. The tridentate ligands are assembled from monoimine precursors, the latter being synthesized by selective reaction with one carbonyl group of the alpha-dione. While attempts to separately isolate tridentate ligands in pure form were unsuccessful, metal complexes supported by the tridentate ligand are readily synthesized in-situ, by forming the ligand in the presence of the metal halide, resulting in a metal complex which subsequently crystallizes out of the reaction mixture. Metal complexes with NNN, NNO, NNP and NNS donor sets have been prepared and examples supported by NNN, NNP and NNS ligands have been structurally characterized. In the solid state, NNN and NNP ligands coordinate in a mer fashion and the metal complexes possess distorted square pyramidal structures and high spin (S = 2) electronic configurations. Compounds with NNS coordination environments display a variety of solid state structures, ranging from those with unbound sulfur atoms, including chloride bridged and solvent ligated species, to those with sulfur weakly bound to the metal center. The extent of sulfur ligation depends on the donor ability of the crystallization solvent and the substitution pattern of the arylthioether substituent.  相似文献   
39.
The fabrication of heteroaggregates comprising inorganic and organic nanoparticles of different sizes is reported. Control over the assembly of nanoscale functional building units is of great significance to many practical applications. Joining together different spherical nanoparticles in a defined manner allows control over the shape of the composites. If two types of constituents are chosen that differ in size, the surfaces of the composites exhibit two specific radii of curvature, yielding aggregates of dual surface roughness. Moreover, if the constituents consist of different materials, the resulting heteroaggregates feature both compositional and interfacial anisotropy, offering unprecedented perspectives for custom-tailored colloids. This study describes a two-step approach towards such designer particles. At first, amine-modified polystyrene particles with 154 nm diameter were assembled into clusters of well-defined configurations. Onto these, oppositely charged inorganic particles with diameters of only a few nanometres were deposited by direct uptake from solution, resulting in numerous functional entities all over the surface of the polymer clusters. Despite the fact that oppositely charged constituents are brought together, charge reversal by uptake of nanoparticles allows for stable suspensions of heterocomposites. Hence, the possibility to assemble particles into nanoscale heterocomposites with full control over shape, composition, and surface roughness is demonstrated.  相似文献   
40.
The conditions, under which in aqueous solution CuII ist reduced by FeII, are discussed. The conditions for the formation of Cu2O and metallic Cu, respectively, are determined by means of potentiometric measurements and other experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号