首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4504篇
  免费   444篇
  国内免费   250篇
化学   3186篇
晶体学   15篇
力学   167篇
综合类   22篇
数学   572篇
物理学   1236篇
  2024年   15篇
  2023年   75篇
  2022年   141篇
  2021年   145篇
  2020年   114篇
  2019年   116篇
  2018年   85篇
  2017年   73篇
  2016年   168篇
  2015年   147篇
  2014年   192篇
  2013年   326篇
  2012年   387篇
  2011年   360篇
  2010年   265篇
  2009年   215篇
  2008年   293篇
  2007年   244篇
  2006年   242篇
  2005年   223篇
  2004年   191篇
  2003年   172篇
  2002年   148篇
  2001年   106篇
  2000年   80篇
  1999年   71篇
  1998年   51篇
  1997年   64篇
  1996年   65篇
  1995年   51篇
  1994年   47篇
  1993年   38篇
  1992年   26篇
  1991年   19篇
  1990年   27篇
  1989年   17篇
  1988年   17篇
  1987年   15篇
  1986年   14篇
  1985年   18篇
  1984年   22篇
  1983年   13篇
  1982年   13篇
  1981年   8篇
  1980年   14篇
  1979年   15篇
  1978年   8篇
  1976年   8篇
  1975年   5篇
  1974年   5篇
排序方式: 共有5198条查询结果,搜索用时 15 毫秒
11.
The uranyl chelate of ferron was investigated polarographically over the pH range 1.98–10.00 and ligand concentration 0.005–0.060.M. A reversible and diffusion controlled reduction wave was obtained, however, when ferron concentration below 0.02M and pH below 5.0, it became irreversible. The chelate species identified were UO2(HA) 2 at pH range 2.5–7.1 and UO2(OH) (A) 2?3 over pH 7.1. The electron-transfer coefficient, rate constant, diffusion coefficient and activation energy of the reduction process were determined.  相似文献   
12.
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that might lead to very serious consequences. Notably, mental status change, brain confusion, and smell and taste disorders along with neurological complaints have been reported in patients infected with SARS-CoV-2. Furthermore, human brain tissue autopsies from COVID-19 patients show the presence of SARS-CoV-2 neuroinvasion, which correlates with the manifestation of meningitis, encephalitis, leukocyte infiltration, and neuronal damage. The olfactory mucosa has been suggested as a way of entry into the brain. SARS-CoV-2 infection is also known to provoke a hyper-inflammatory reaction with an exponential increase in the production of pro-inflammatory cytokines leading to systemic responses, even in the absence of direct infection of brain cells. Angiotensin-converting enzyme 2 (ACE2), the entry receptor of SARS-CoV-2, has been extensively demonstrated to be present in the periphery, neurons, and glial cells in different brain regions. To dissect the details of neurological complications and develop therapies helping COVID-19 survivors regain pre-infection quality of life, the development of robust clinical models is highly warranted. Several human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models have been developed and used for antiviral drug screening and vaccine development, as well as for better understanding of the molecular pathogenetic mechanisms of SARS-CoV-2 infection. In this review, we summarize recent results from the studies involving two such mouse models, namely K18- and CAG-hACE2 transgenics, to evaluate the direct and indirect impact of SARS-CoV-2 infection on the central nervous system.  相似文献   
13.
The bud of Vaccinium dunalianum Wight has been traditionally consumed as health herbal tea by “Yi” people in Yunnan Province, China, which was locally named “Que Zui tea”. This paper studied the chemical constituents of five fractions from Vaccinium dunalianum, and their enzyme inhibitory effects of α-glucosidase and pancreatic lipase, antioxidant activity, and cytoprotective effects on H2O2-induced oxidative damage in HepG2 cells. The methanol extract of V. dunalianum was successively partitioned with petroleum ether (PF), chloroform (CF), ethyl acetate (EF), n-butanol (BF), and aqueous (WF) to obtain five fractions. The chemical profiling of the five fractions was analyzed by ultra-high-performance liquid chromatography coupled with a tandem mass spectrometry (UHPLC-MS/MS), and 18 compounds were tentatively identified. Compared to PF, CF, BF and WF, the EF revealed the highest total phenols (TPC) and total flavonoids (TFC), and displayed the strongest enzyme inhibition ability (α-glucosidase and pancreatic lipase) and antioxidant capacity (DPPH, ABTS and FRAP). Furthermore, these five fractions, especially EF, could effectively inhibit reactive oxygen species (ROS) production and cell apoptosis on H2O2-induced oxidative damage protection in HepG2 cells. This inhibitory effect might be caused by the up-regulation of intracellular antioxidant enzyme activity (CAT, SOD, and GSH). The flavonoids and phenolic acids of V. dunalianum might be the bioactive substances responsible for enzyme inhibitory, antioxidant, and cytoprotective activities.  相似文献   
14.
A small fenbufen library comprising 18 compounds was prepared via Suzuki Miyara coupling. The five-step preparations deliver 9–17% biphenyl compounds in total yield. These fenbufen analogs exert insignificant activity against the IL-1 release as well as inhibiting cyclooxygenase 2 considerably. Both the para-amino and para-hydroxy mono substituents display the most substantial COX-2 inhibition, particularly the latter one showing a comparable activity as celecoxib. The most COX-2 selective and bioactive disubstituted compound encompasses one electron-withdrawing methyl and one electron-donating fluoro groups in one arene. COX-2 is selective but not COX-2 to bioactive compounds that contain both two electron-withdrawing groups; disubstituted analogs with both resonance-formable electron-donating dihydroxy groups display high COX-2 activity but inferior COX-2 selectivity. In silico simulation and modeling for three COX-2 active—p-fluoro, p-hydroxy and p-amino—fenbufens show a preferable docking to COX-2 than COX-1. The most stabilization by the p-hydroxy fenbufen with COX-2 predicted by theoretical simulation is consistent with its prominent COX-2 inhibition resulting from experiments.  相似文献   
15.
The synthesis of novel symmetrical liquid crystalline compounds based on 5-methyl-5-[2-(4-alkyloxyphenyl)-2-hydroxyethyl]-2,2-bipyridines is reported, together with some physical properties. Although the chelating head-groups are connected via a chiral sp3 carbon atom, all the materials are mesomorphic. Intermolecular hydrogen bonding between pyridino and hydroxy fragments in the mesophases is made apparent by FTIR spectroscopy.  相似文献   
16.
DPA‐713 is the lead compound of a recently reported pyrazolo[1,5‐a]pyrimidineacetamide series, targeting the translocator protein (TSPO 18 kDa), and as such, this structure, as well as closely related derivatives, have been already successfully used as positron emission tomography radioligands. On the basis of the pharmacological core of this ligands series, a new magnetic resonance imaging probe, coded DPA‐C6‐(Gd)DOTAMA was designed and successfully synthesized in six steps and 13% overall yield from DPA‐713. The Gd‐DOTA monoamide cage (DOTA = 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid) represents the magnetic resonance imaging reporter, which is spaced from the phenylpyrazolo[1,5‐a]pyrimidineacetamide moiety (DPA‐713 motif) by a six carbon‐atom chain. DPA‐C6‐(Gd)DOTAMA relaxometric characterization showed the typical behavior of a small‐sized molecule (relaxivity value: 6.02 mM?1 s?1 at 20 MHz). The good hydrophilicity of the metal chelate makes DPA‐C6‐(Gd)DOTAMA soluble in water, affecting thus its biodistribution with respect to the parent lipophilic DPA‐713 molecule. For this reason, it was deemed of interest to load the probe to a large carrier in order to increase its residence lifetime in blood. Whereas DPA‐C6‐(Gd)DOTAMA binds to serum albumin with a low affinity constant, it can be entrapped into liposomes (both in the membrane and in the inner aqueous cavity). The stability of the supramolecular adduct formed by the Gd‐complex and liposomes was assessed by a competition test with albumin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
17.
A tunable optical rail is embedded into the cavity of a nonlinear-polarization-rotation(NPR) mode-locked fiber laser to generate a sampling pulse with different repetition frequencies and realize bit-rate-adaptive software synchronous optical sampling.Two ultrashort pulses(20.26677 and 20.22900 MHz) are derived,and a 100-MHz data signal is sampled twice with these pulses based on sum-frequency generation(SFG) in periodically poled lithium niobate(PPLN).The eye diagram is successfully recovered,and an estimated bit rate of 102.22 MHz is derived.This method is feasible for bit rates ranging from 200 MHz to 1 GHz,with <3% relative error.  相似文献   
18.
A phenylacetylene macrocycle (PAM) derivative containing triphenylamine as the framework was synthesized in one-step Sonogashira coupling. The photophysical and electrochemical properties were investigated in details. This hexamer shows significant enhancement in two-photon absorption cross-section relative to reported PAM derivatives.  相似文献   
19.
Polymer thin-film transistors (PTFTs) based on poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) semiconductor are fabricated by spin-coating process and characterized. In the experiments, solution preparation, deposition and device measurements are all performed in air for large-area applications. Hysteresis effect and gate-bias stress effect are observed for the devices at room temperature. The saturation current decreases and the threshold voltage shifts toward the negative direction upon gate-bias stress, but carrier mobility hardly changes. By using quasi-static C-V analysis for MOS capacitor structure, it can be deduced that the origin of threshold-voltage shift upon negative gate-bias stress is predominantly associated with hole trapping within the SiO2 gate dielectric near the SiO2/MEH-PPV interface due to hot-carrier emission.  相似文献   
20.
Using temperature-dependent photoluminescence (PL) measurements, we report a comprehensive study on optical transitions in AlyInxGa1−xyN epilayer with target composition, x=0.01 and y=0.07 and varying epilayer thickness of 40, 65 and 100 nm. In these quaternary alloys, we have observed an anomalous PL temperature dependence such as an S-shape band-edge PL peak shift and a W-shape spectral broadening with an increase in temperature. With an increase in excitation power density, the emission peak from the AlInGaN epilayers shows a blue shift at 100 K and a substantial red shift at room temperature. This is attributed to the localization of excitons at the band-tail states at low temperature. Compared to 40 and 65 nm thick epilayers, the initial blue shift observed with low excitation power from 100 nm thick AlInGaN epilayer at room temperature is caused by the existence of deeper localized states due to confinement effects arising from higher In and Al incorporation. The subsequent red shift of the PL peak can be attributed by free motion of delocalized carriers that leads to bandgap renormalization by screening. Due to competing effects of exciton and free carrier recombination processes, such behavior of optical transitions leads to two different values of exponent ‘k’ in the fitting of PL emission intensity as a function of excitation power.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号