首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2688篇
  免费   94篇
  国内免费   6篇
化学   2178篇
晶体学   14篇
力学   22篇
数学   267篇
物理学   307篇
  2023年   21篇
  2022年   74篇
  2021年   80篇
  2020年   60篇
  2019年   54篇
  2018年   28篇
  2017年   30篇
  2016年   84篇
  2015年   88篇
  2014年   92篇
  2013年   152篇
  2012年   174篇
  2011年   202篇
  2010年   117篇
  2009年   113篇
  2008年   198篇
  2007年   201篇
  2006年   164篇
  2005年   153篇
  2004年   106篇
  2003年   110篇
  2002年   69篇
  2001年   27篇
  2000年   39篇
  1999年   26篇
  1998年   14篇
  1997年   19篇
  1996年   24篇
  1995年   12篇
  1994年   11篇
  1993年   23篇
  1992年   17篇
  1991年   16篇
  1990年   13篇
  1988年   9篇
  1987年   10篇
  1986年   12篇
  1985年   19篇
  1984年   11篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   8篇
  1979年   10篇
  1978年   6篇
  1973年   7篇
  1969年   5篇
  1968年   8篇
  1967年   7篇
  1966年   5篇
排序方式: 共有2788条查询结果,搜索用时 15 毫秒
131.
We present in this work a first X-ray Absorption Spectroscopy study of the interactions of Zn with human BST2/tetherin and SARS-CoV-2 orf7a proteins as well as with some of their complexes. The analysis of the XANES region of the measured spectra shows that Zn binds to BST2, as well as to orf7a, thus resulting in the formation of BST2-orf7a complexes. This structural information confirms the the conjecture, recently put forward by some of the present Authors, according to which the accessory orf7a (and possibly also orf8) viral protein are capable of interfering with the BST2 antiviral activity. Our explanation for this behavior is that, when BST2 gets in contact with Zn bound to the orf7a Cys15 ligand, it has the ability of displacing the metal owing to the creation of a new disulfide bridge across the two proteins. The formation of this BST2-orf7a complex destabilizes BST2 dimerization, thus impairing the antiviral activity of the latter.  相似文献   
132.
The development of effective thermally conductive rubber nanocomposites for heat management represents a tricky point for several modern technologies, ranging from electronic devices to the tire industry. Since rubber materials generally exhibit poor thermal transfer, the addition of high loadings of different carbon-based or inorganic thermally conductive fillers is mandatory to achieve satisfactory heat dissipation performance. However, this dramatically alters the mechanical behavior of the final materials, representing a real limitation to their application. Moreover, upon fillers’ incorporation into the polymer matrix, interfacial thermal resistance arises due to differences between the phonon spectra and scattering at the hybrid interface between the phases. Thus, a suitable filler functionalization is required to avoid discontinuities in the thermal transfer. In this challenging scenario, the present review aims at summarizing the most recent efforts to improve the thermal conductivity of rubber nanocomposites by exploiting, in particular, inorganic and hybrid filler systems, focusing on those that may guarantee a viable transfer of lab-scale formulations to technological applicable solutions. The intrinsic relationship among the filler’s loading, structure, morphology, and interfacial features and the heat transfer in the rubber matrix will be explored in depth, with the ambition of providing some methodological tools for a more profitable design of thermally conductive rubber nanocomposites, especially those for the formulation of tires.  相似文献   
133.
Waste valorization represents one of the main social challenges when promoting a circular economy and environmental sustainability. Here, we evaluated the effect of the polyphenols extracted from apple peels, normally disposed of as waste, on the amyloid aggregation process of κ-casein from bovine milk, a well-used amyloidogenic model system. The effect of the apple peel extract on protein aggregation was examined using a thioflavin T fluorescence assay, Congo red binding assay, circular dichroism, light scattering, and atomic force microscopy. We found that the phenolic extract from the peel of apples of the cultivar “Fuji”, cultivated in Sicily (Caltavuturo, Italy), inhibited κ-casein fibril formation in a dose-dependent way. In particular, we found that the extract significantly reduced the protein aggregation rate and inhibited the secondary structure reorganization that accompanies κ-casein amyloid formation. Protein-aggregated species resulting from the incubation of κ-casein in the presence of polyphenols under amyloid aggregation conditions were reduced in number and different in morphology.  相似文献   
134.
The 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-CoV-2 agents. The availability of resolved structures allows structure-based computational approaches to be carried out even though the lack of known inhibitors prevents a proper validation of the performed simulations. The innovative idea of the study is to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns. Docking simulations using four different programs (Fred, Glide, LiGen, and PLANTS) were performed investigating the role of both multiple binding modes (by binding space) and multiple isomers/states (by developing the corresponding isomeric space). The computed docking scores were used to develop consensus models, which allow an in-depth comparison of the resulting performances. On average, the reached performances revealed the different sensitivity to isomeric differences and multiple binding modes between the four docking engines. In detail, Glide and LiGen are the tools that best benefit from isomeric and binding space, respectively, while Fred is the most insensitive program. The obtained results emphasize the fruitful role of combining various docking tools to optimize the predictive performances. Taken together, the performed simulations allowed the rational development of highly performing virtual screening workflows, which could be further optimized by considering different 3CL-Pro structures and, more importantly, by including true SARS-CoV-2 3CL-Pro inhibitors (as learning set) when available.  相似文献   
135.
The response of a coeliac and a healthy gut microbiota to the green algae Chlorella pyrenoidosa was evaluated using an in vitro continuous, pH controlled, gut model system, which simulated the human colon. The effect of C. pyrenoidosa on the microbial structure was determined by 16S rRNA gene sequencing and inferred metagenomics, whereas the metabolic activitywas determined by1H-nuclear magnetic resonancespectroscopic analysis. The addition of C. pyrenoidosa significantly increased the abundance of the genera Prevotella, Ruminococcus and Faecalibacterium in the healthy donor, while an increase in Faecalibacterium, Bifidobacterium and Megasphaera and a decrease in Enterobacteriaceae were observed in the coeliac donor. C. pyrenoidosa also altered several microbial pathways including those involved in short-chain fatty acid (SCFA) production. At the metabolic level, a significant increase from baseline was seen in butyrate and propionate (p < 0.0001) in the healthy donor, especially in vessels 2 and 3. While acetate was significantly higher in the healthy donor at baseline in vessel 3 (p < 0.001) compared to the coeliac donor, this was markedly decreased after in vitro fermentation with C. pyrenoidosa. This is the first in vitro fermentation study of C. pyrenoidosa and human gut microbiota, however, further in vivo studies are needed to prove its efficacy.  相似文献   
136.
Arrays of transparent dielectric nanorods are shown to produce very large local field enhancements at specific resonant conditions. These structures would lead to enhancement of molecular fluorescence signals without quenching. The resonant angular width and field enhancements are analytically derived as a function of wavelength, grating period, rod radius, and dielectric constant.  相似文献   
137.
Human tumor xenografts in immunodeficient mice are a very popular model to study the development of cancer and to test new drug candidates. Among the parameters analyzed are the variations in the lipid composition, as they are good indicators of changes in the cellular metabolism. Here, we present a study on the distribution of lipids in xenografts of NCI-H1975 human lung cancer cells, using MALDI imaging mass spectrometry and UHPLC-ESI-QTOF. The identification of lipids directly from the tissue by MALDI was aided by the comparison with identification using ESI ionization in lipid extracts from the same xenografts. Lipids belonging to PCs, PIs, SMs, DAG, TAG, PS, PA, and PG classes were identified and their distribution over the xenograft was determined. Three areas were identified in the xenograft, corresponding to cells in different metabolic stages and to a layer of adipose tissue that covers the xenograft.
FIGURE
?  相似文献   
138.
This study was performed to investigate the physical–chemical characteristics of carvedilol (CRV), complemented by compatibility studies with a great variety of pharmaceutical excipients. Thermogravimetry and differential scanning calorimetry, supported by diffuse reflectance infrared fourier transform spectroscopy (DRIFT), X-ray powder diffraction, and scanning electron microscopy (SEM) were selected as the solid-state techniques for the intended analyses. In addition, non-isothermal methods were employed to investigate kinetic data of CRV decomposition process under nitrogen and air atmospheres. CRV is characterized by an endothermic sharp event (T peak = 389.81 K and ΔH fusion of ?176.28 J g?1) and a thermal decomposition behavior in two stages, totalizing 98 % of mass loss. The CRV pattern diffraction presents prominent peaks at 2θ: 5.92°, 14.90°, 18.62°, 24.47°, and 26.30°, and the DRIFT spectrum showed the main characteristics bands for CRV chemical functional groups. The SEM photomicrographs demonstrate that CRV is characterized by irregular blocky shaped crystals. Zero order kinetics was determined by Ozawa method in both nitrogen and air atmospheres. The compatibility results showed no evidence of any incompatibility among CRV and all the excipients analyzed.  相似文献   
139.
Thin gold layers were sputtered on the quaternized polysulfones (containing different tertiary amines—N,N-dimethylethylamine and N,N-dimethyloctylamine, respectively) surfaces unmodified and modified by low-pressure and high-frequency plasma treatment. Adhesion and morphological aspects of complex structures were studied for different gold sputtering and plasma treatment times. Water contact angle, atomic force microscopy, and surface properties reveal that adhesion increases with gold sputtering and plasma treatment times. Values of the mean adhesion force between cantilever and the studied surfaces, measured from AFM investigation, were correlated with quaternized polysulfone structures, modification of hydrophobicity after plasma treatment, and gold deposition on polymer surfaces.  相似文献   
140.
Porous organic frameworks perform a variety of functions, owing to their extremely large surface areas, but the dynamics of the structural elements have never been explored. Our discovery of ultra‐fast molecular rotors (106 Hz at 225 K) in their architectures allows us to look at them from a new perspective. The constructive elements are robust struts and rapid rotors, resulting in a dynamic material whose motion can be frozen or released at will. The rotational motion can be actively regulated in response to guests. As the temperature is increased, the rotors spin ever faster, approaching free‐rotational diffusion at 550 K. The unusual combination of remarkable nanoporosity with fast dynamics is intriguing for engineering oscillating dipoles and producing responsive materials with switchable ferroelectricity, and for applications spanning from sensors to actuators, which capture and release chemicals on command.  相似文献   
[首页] « 上一页 [9] [10] [11] [12] [13] 14 [15] [16] [17] [18] [19] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号