首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4094篇
  免费   96篇
  国内免费   11篇
化学   2969篇
晶体学   20篇
力学   79篇
数学   472篇
物理学   661篇
  2023年   31篇
  2022年   91篇
  2021年   105篇
  2020年   83篇
  2019年   64篇
  2018年   46篇
  2017年   42篇
  2016年   114篇
  2015年   103篇
  2014年   115篇
  2013年   239篇
  2012年   237篇
  2011年   284篇
  2010年   166篇
  2009年   145篇
  2008年   293篇
  2007年   290篇
  2006年   236篇
  2005年   233篇
  2004年   161篇
  2003年   149篇
  2002年   111篇
  2001年   56篇
  2000年   60篇
  1999年   46篇
  1998年   33篇
  1997年   47篇
  1996年   39篇
  1995年   37篇
  1994年   41篇
  1993年   40篇
  1992年   40篇
  1991年   23篇
  1990年   22篇
  1988年   17篇
  1987年   20篇
  1986年   20篇
  1985年   41篇
  1984年   29篇
  1983年   24篇
  1982年   25篇
  1981年   29篇
  1980年   17篇
  1979年   21篇
  1978年   14篇
  1977年   12篇
  1976年   13篇
  1975年   16篇
  1974年   11篇
  1973年   13篇
排序方式: 共有4201条查询结果,搜索用时 0 毫秒
101.
The occurrence of di-(2-ethyhexyl)phthalate (DEHP), nonylphenol and nonyphenol mono- and diethoxylates (NPEs) and seven polychlorinated biphenyl (PCB) congeners in different types of sludge samples is reported. The analysis of these compounds was carried out by sonication-assisted extraction and analytical determination by gas chromatography coupled with a mass spectrometry detector, following a previously described method. The applicability of the method was tested by monitoring the organic pollutants in primary, secondary, mixed, and digested-dehydrated sludge samples from two wastewater treatment plants (WWTPs) based on aerobic and on anaerobic biological stabilization. The occurrence of these compounds in sewage sludge and the influence of sludge stabilization process on the further farmland application of the sludge were evaluated. DEHP and NPEs were detected in all analysed sludge samples from both WWTPs at concentration levels in the range of 22.3–601?mg?kg?1 and 136–2357?mg?kg?1 dm (dry matter), respectively. PCBs were detected in all types of sludge analysed from the anaerobic WWTP but was not detected in any sludge sample from the aerobic WWTP. Concentration levels of the sum of the seven PCBs congeners were up to 1.5?mg?kg?1 dm. The concentration of DEHP, sum of NPEs, and sum of the seven PCB congeners were higher than the limits fixed in the third draft of the future Sludge Directive for land application of sludge in the 67%, 100%, and 11% of samples from the anaerobic WWTP and in the 83%, 92%, and 0% of samples from the aerobic WWTP, respectively.  相似文献   
102.
Samples of surface sediments and tissues (liver and muscle) of commercially available European silver eels (Anguilla anguilla L.) collected from Varano lagoon (Italy) were analysed to determine trace element contents. Univariate and multivariate analyses were performed to highlight both the differences between sampling sites and the influence of channel discharges. Atomic ratios indices for sediment data and biological enrichment factors (BEF) for eel tissues were calculated in order to evaluate the enrichment factor due to human activities. The highest levels of As (11.9?µg?g?1) and Zn (14.1?µg?g?1) were observed in the south-eastern zone of the lagoon, which is influenced by urban and agricultural discharges. The low levels of Hg observed in this study (0.04?µg?g?1) led us to exclude both natural and human local sources of this element. Trace element concentrations of all elements were lower in muscle than in liver tissue. Significant enrichment of Cu and Zn was found in livers.  相似文献   
103.
In this work, the ternary complex formation among copper(II), 6-methylpicolinic acid (H6Mepic) as primary ligand, and the amino acids aspartic acid (H2Asp), glutamic acid (H2Glu) and histidine (HHis) as secondary ligands, were studied in aqueous solution at 25 °C using 1.0 mol·dm?3 KNO3 as the ionic medium. Analysis of the potentiometric data using the least squares computational program LETAGROP indicates formation of the species [Cu(6Mepic)]+, Cu(6Mepic)(OH), [Cu(6Mepic)(OH)2]?, Cu(6Mepic)2 and [Cu(6Mepic)3]? in the binary Cu(II)–H6Mepic system. In the ternary Cu(II)–H6Mepic–H2Asp system the complexes [Cu(6Mepic)(H2Asp)]+, Cu(6Mepic)(HAsp), [Cu(6Mepic)(Asp)]? and [Cu(6Mepic)(Asp)(OH)]2? were observed. In the case of the Cu(II)–H6Mepic–H2Glu system the complexes Cu(6Mepic)(HGlu), [Cu(6Mepic)(Glu)]?, [Cu(6Mepic)(Glu)(OH)]2? and [Cu(6Mepic)(glu)(OH)2]3? were detected. Finally, in the Cu(II)–H6Mepic–HHis system the complexes [Cu(6Mepic)(HHis)]+, Cu(6Mepic)(His) and [Cu(6Mepic)(His)(OH)]? were observed. The species distribution diagrams as a function of pH are briefly discussed.  相似文献   
104.
A set of variously substituted indazoles and hetero-aromatic derivatives were synthesized from o-halo-(het)arylaldehydes using a palladium catalyzed amination followed by cyclization. Starting from phenones, this process was extended to give 3-substituted indazoles. Moreover, N-1-substituted-indazoles can be reached by this strategy using an optional selective N-1-alkylation step during the process. This methodology offers a general and easy route for the synthesis of regioselectively substituted indazoles.  相似文献   
105.
Bifunctional chelating agents (BFCAs) are small molecules containing a chelating unit, able to strongly coordinate a metal ion, and a reactive functional group, devised to form a stable covalent bond with another molecule. BFCAs are widely employed since their conjugation to a suitable biomolecule (e.g., a peptide or an antibody) allows the synthesis of diagnostic or therapeutic agents that specifically target diseased tissue with metals or radiometals. For this reason, BFCAs find application in diagnostic imaging, molecular imaging, and radiotherapy of cancer. The synthesis of new BFCAs based on a diethylenetriaminepentaacetic acid (DTPA) structure in which one or two carboxylic groups are replaced with phosphonic units is described. The phosphonic group, aside from being a classical isostere of the carboxylic acid in coordination chemistry, allows to modulate the physico-chemical properties of the ligands and of the corresponding complexes.  相似文献   
106.
The development of effective thermally conductive rubber nanocomposites for heat management represents a tricky point for several modern technologies, ranging from electronic devices to the tire industry. Since rubber materials generally exhibit poor thermal transfer, the addition of high loadings of different carbon-based or inorganic thermally conductive fillers is mandatory to achieve satisfactory heat dissipation performance. However, this dramatically alters the mechanical behavior of the final materials, representing a real limitation to their application. Moreover, upon fillers’ incorporation into the polymer matrix, interfacial thermal resistance arises due to differences between the phonon spectra and scattering at the hybrid interface between the phases. Thus, a suitable filler functionalization is required to avoid discontinuities in the thermal transfer. In this challenging scenario, the present review aims at summarizing the most recent efforts to improve the thermal conductivity of rubber nanocomposites by exploiting, in particular, inorganic and hybrid filler systems, focusing on those that may guarantee a viable transfer of lab-scale formulations to technological applicable solutions. The intrinsic relationship among the filler’s loading, structure, morphology, and interfacial features and the heat transfer in the rubber matrix will be explored in depth, with the ambition of providing some methodological tools for a more profitable design of thermally conductive rubber nanocomposites, especially those for the formulation of tires.  相似文献   
107.
Waste valorization represents one of the main social challenges when promoting a circular economy and environmental sustainability. Here, we evaluated the effect of the polyphenols extracted from apple peels, normally disposed of as waste, on the amyloid aggregation process of κ-casein from bovine milk, a well-used amyloidogenic model system. The effect of the apple peel extract on protein aggregation was examined using a thioflavin T fluorescence assay, Congo red binding assay, circular dichroism, light scattering, and atomic force microscopy. We found that the phenolic extract from the peel of apples of the cultivar “Fuji”, cultivated in Sicily (Caltavuturo, Italy), inhibited κ-casein fibril formation in a dose-dependent way. In particular, we found that the extract significantly reduced the protein aggregation rate and inhibited the secondary structure reorganization that accompanies κ-casein amyloid formation. Protein-aggregated species resulting from the incubation of κ-casein in the presence of polyphenols under amyloid aggregation conditions were reduced in number and different in morphology.  相似文献   
108.
This work evaluated the efficacy of pomegranate byproducts, specifically peel powder, as valid preservatives for food quality. Ready-to-cook cod sticks breaded with pomegranate peel powder were prepared. Shelf-life tests were conducted on breaded cod sticks during refrigerated storage (17 days) at 4 °C, monitoring the pH, microbiological and sensory quality. In addition, the nutritional quality of both the breaded and control samples was assessed. The results highlighted that active samples showed higher phenol and flavonoid content and higher antioxidant activity compared to the control fish, suggesting that pomegranate peel powder was responsible for a significant increase in cod stick nutritional quality. Furthermore, the cod stick active breading led to a delay in microbial growth without affecting the sensory properties; rather, it helped slow down the sensory attribute decline during the refrigerated storage. The data suggest that using pomegranate byproducts in breaded cod stick was effective in prolonging its shelf life, as well as improving its nutritional quality. Therefore, pomegranate peel powder can be considered as a potential resource as natural food preservative.  相似文献   
109.
The coordination ability of the [(ppy)Au(IPr)]2+ fragment [ppy = 2-phenylpyridine, IPr = 1,3-bis(2,6-di-isopropylphenyl)-imidazol-2-ylidene] towards different anionic and neutral X ligands (X = Cl, BF4, OTf, H2O, 2-butyne, 3-hexyne) commonly involved in the crucial pre-equilibrium step of the alkyne hydration reaction is computationally investigated to shed light on unexpected experimental observations on its catalytic activity. Experiment reveals that BF4 and OTf have very similar coordination ability towards [(ppy)Au(IPr)]2+ and slightly less than water, whereas the alkyne complex could not be observed in solution at least at the NMR sensitivity. Due to the steric hindrance/dispersion interaction balance between X and IPr, the [(ppy)Au(IPr)]2+ fragment is computationally found to be much less selective than a model [(ppy)Au(NHC)]2+ (NHC = 1,3-dimethylimidazol-2-ylidene) fragment towards the different ligands, in particular OTf and BF4, in agreement with experiment. Effect of the ancillary ligand substitution demonstrates that the coordination ability of Au(III) is quantitatively strongly affected by the nature of the ligands (even more than the net charge of the complex) and that all the investigated gold fragments coordinate to alkynes more strongly than H2O. Remarkably, a stabilization of the water-coordinating species with respect to the alkyne-coordinating one can only be achieved within a microsolvation model, which reconciles theory with experiment. All the results reported here suggest that both the Au(III) fragment coordination ability and its proper computational modelling in the experimental conditions are fundamental issues for the design of efficient catalysts.  相似文献   
110.
The 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-CoV-2 agents. The availability of resolved structures allows structure-based computational approaches to be carried out even though the lack of known inhibitors prevents a proper validation of the performed simulations. The innovative idea of the study is to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns. Docking simulations using four different programs (Fred, Glide, LiGen, and PLANTS) were performed investigating the role of both multiple binding modes (by binding space) and multiple isomers/states (by developing the corresponding isomeric space). The computed docking scores were used to develop consensus models, which allow an in-depth comparison of the resulting performances. On average, the reached performances revealed the different sensitivity to isomeric differences and multiple binding modes between the four docking engines. In detail, Glide and LiGen are the tools that best benefit from isomeric and binding space, respectively, while Fred is the most insensitive program. The obtained results emphasize the fruitful role of combining various docking tools to optimize the predictive performances. Taken together, the performed simulations allowed the rational development of highly performing virtual screening workflows, which could be further optimized by considering different 3CL-Pro structures and, more importantly, by including true SARS-CoV-2 3CL-Pro inhibitors (as learning set) when available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号