首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   3篇
化学   65篇
晶体学   2篇
力学   1篇
数学   3篇
物理学   8篇
  2020年   2篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   6篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1909年   2篇
  1903年   1篇
  1902年   1篇
  1890年   1篇
  1885年   1篇
排序方式: 共有79条查询结果,搜索用时 31 毫秒
51.
6-propionyl-2-(N,N-dimethyl)aminonaphtahalene, PRODAN, is widely used as a fluorescent molecular probe because of its significant Stokes shift in polar solvents. It is an aromatic compound with intramolecular charge-transfer states (ICT) that can be particularly useful as a sensor. The nature of the emissive states has not yet been established despite the detailed experimental and theoretical investigations done on this fluorophore. In this work, we performed absorption, steady-state, time-resolved fluorescence (TRES) and time-resolved area normalized emission (TRANES) spectroscopies on the molecular probe PRODAN in the anionic water/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/n-heptane and the cationic water/benzyl-n-hexadecyl dimethylammonium chloride (BHDC)/benzene reverse micelles (RMs). The experiments were done by varying the surfactant concentrations at a fixed molar ratio (W = [H2O]/[Surfactant]) and changing the water content at a constant surfactant concentration. The results obtained varying the surfactant concentration at W = 0 show a bathochromic shift and an increase in the intensity of the PRODAN emission band due to the PRODAN partition process between the external solvent and the RMs interface. The partition constants, Kp, are quantified from the changes in the PRODAN emission spectra and the steady-state anisotropy () with the surfactant concentration in both RMs. The Kp value is larger in the BHDC than the AOT RMs, probably due to the interaction between the cationic polar head of the surfactant and the aromatic ring of PRODAN. The partition process is confirmed with the TRES experiments, where the data fit to a continuous model, and with the time-resolved area normalized emission spectroscopy (TRANES) spectra, where only one isoemissive point is detected. On the other hand, the emission spectra at W = 10 and 20 show a dual fluorescence with a new band that emerges in the low-energy region of the spectra, a band that was previously assigned to the PRODAN emission from the water pool of RMs. Our studies demonstrate that this band is due to the emission from an ICT state of the molecular probe PRODAN located at the interface of the RMs. These results are also confirmed by the lifetime measurements, the TRES experiments where the results fit to a two-state model, and the time-resolved area normalized emission spectroscopy (TRANES) spectra where three or two isoemissive points are detected in the AOT and BHDC RMs, respectively. In the AOT RMs, Kp values obtained at W = 10 and 20 are almost independent of the water content; the values are higher for the BHDC RMs due to the higher micropolarity of this interface.  相似文献   
52.
53.
54.
We found that the absorption spectra of 2-acetylphenol (2-HAP), 4-acetylphenol (4-HAP), and p-nitrophenol (p-NPh) in water/sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane reverse micelles (RMs) at various W(0) (W(0) = [H(2)O]/[surfactant]) values studied changed with time if (-)OH ions were present in the RM water pool. There is an evolution of ionized phenol (phenolate) bands to nonionized phenol absorption bands with time and this process is faster at low W(0) values and with phenols with higher bulk water pK(a) values. That is, in bulk water and at the hydroxide anion concentration used, only phenolate species are observed, whereas in AOT RMs at this fixed hydroxide anion concentration, ionized phenols convert into nonionized phenol species over time. Furthermore, we demonstrate that, independent of the (-)OH concentration used to prepare the AOT RMs, the nonionized phenols are the more stable species in the RM media. We explain our results by considering that strong hydrogen-bonding interactions between phenols and the AOT polar head groups result in the existence of only nonionized phenols at the AOT RM interface. The situation is quite different when the phenols are dissolved in cationic benzyl-n-hexadecyldimethylammonium chloride RMs. Therein, only phenolates species are present at the (-)OH concentrations used. The results clearly demonstrate that the classical definition of pH does not apply in a confined environment, such as in the interior of RMs and challenge the general idea that pH can be determined inside RMs.  相似文献   
55.
Concentration and temperature-dependent NMR chemical shifts for maleic anhydride in acetone and benzene solution are interpreted in terms of equilibria between monomers and solvent-solute molecular complexes. Calorimetric heats of dilution and heats of solution give thermodynamic parameters that agree with those determined in the NMR experiments. The thermodynamic parameters obtained are similar for both systems, and it is possible that the previously established role of a ground state complex in the benzene-maleic anhydride photochemical cycloaddition reaction can be extended to the acetone-maleic anhydride photocycloaddition.  相似文献   
56.
Previous work has shown that Benjamin-Feir unstable traveling waves of the complex Ginzburg-Landau equation (CGLE) in two spatial dimensions cannot be stabilized using a particular time-delayed feedback control mechanism known as ‘time-delay autosynchronization’. In this paper, we show that the addition of similar spatial feedback terms can be used to stabilize such waves. This type of feedback is a generalization of the time-delay method of Pyragas [K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A 170 (1992) 421-428] and has been previously used to stabilize waves in the one-dimensional CGLE by Montgomery and Silber [K. Montgomery, M. Silber, Feedback control of traveling wave solutions of the complex Ginzburg Landau equation, Nonlinearity 17 (6) (2004) 2225-2248]. We consider two cases in which the feedback contains either one or two spatial terms. We focus on how the spatial terms may be chosen to select the direction of travel of the plane waves. Numerical linear stability calculations demonstrate the results of our analysis.  相似文献   
57.
Nucleotides, XXI. Synthesis and Properties of Dihydrouridine-Containing Oligonucleotides Substituted 5,6-dihydrouridine derivatives 1, 5 , and 8 have been used in condensation reactions to form a series of dinucleosidemono- and dinucleosidediphosphotriesters, 13 and 16–22 , respectively. Dihydrouridine-containing fully blocked oligomers have also been obtained by stepwise chain-elongation and block condensations including 5 trimers (25–29) and one pentamer (31) , hexamer (32) and octamer (34) each. The new compounds were characterized by UV and partly CD spectra as well as elementary analyses. NMR spectra prove the structures but are not reported in detail.  相似文献   
58.
59.
The absorption spectra of 6′-apo-β-caroten-6′-ol (1), 6′-apo-β-caroten-6′-oic acid (2), and ethyl 6′-apo-β-caroten-6′-oate (3) were analyzed in homogeneous media and in reversed micelles of AOT (sodium 1,4-bis(2-ethylhexyl) sulfosuccinate) in n-heptane. The possible solute–solvent interactions of these compounds were analyzed in pure solvents by Taft and Kamlet's solvatochromic comparison method. These carotenoids show sensitivity similar to that of medium polarity-polarizability as measured by π*. Moreover, the absorption spectra of carotenoid 3 and to much less extent carotenoid 2 display broadening of the visible bands induced by polar solvents characteristic of carotenoids that contain a carbonyl functional group in conjugation with the carbon–carbon π-electron system. They are also sensitive to the ability of the solvent to accept protons in a hydrogen bond interaction measured by β. This sensitivity follows the expected order: 2>1>3. In the reverse micellar system, while the spectra for 3 remain unchanged, the intensity of the absorption band characteristic of n-heptane for 1 and 2 decreases as the AOT concentration increases, and a new band develops. This new band is attributed to the solute bound to the micelle interface. These changes allowed us to determine the binding constant (Kb) between these compounds and AOT. At W0=[H2O]/[AOT]=0 the values of Kb of 326±5 and 6.2±0.3 were found for the acid 2 and the alcohol 1, respectively. The strength of binding is interpreted considering their hydrogen-bond donor ability and the solubility in the organic pseudophase. For 1Kbdecreases as W0 is increased, while for 2 no variation was observed. These effects are discussed in terms of carotenoid–water competition for interfacial binding sites.  相似文献   
60.
The interfacial properties of pure reverse micelles (RMs) are a consequence of the magnitude and nature of noncovalent interactions between confined water and the surfactant polar head. Addition of a second surfactant to form mixed RMs is expected to influence these interactions and thus affect these properties at the nanoscale level. Herein, pure and mixed RMs stabilized by sodium 1,4‐bis‐2‐ethylhexylsulfosuccinate and tri‐n‐octyl phosphine oxide (TOPO) surfactants in n‐heptane were formulated and studied by varying both the water content and the TOPO mole fraction. The microenvironment generated was sensed by following the solvatochromic behavior of the 1‐methyl‐8‐oxyquinolinium betaine probe and 31P NMR spectroscopy. The results reveal unique properties of mixed RMs and we give experimental evidence that free water can be detected in the polar core of the mixed RMs at very low water content. We anticipate that these findings will have an impact on the use of such media as nanoreactors for many types of chemical reactions, such as enzymatic reactions and nanoparticle synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号