首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   3篇
化学   65篇
晶体学   2篇
力学   1篇
数学   3篇
物理学   8篇
  2020年   2篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   6篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1909年   2篇
  1903年   1篇
  1902年   1篇
  1890年   1篇
  1885年   1篇
排序方式: 共有79条查询结果,搜索用时 78 毫秒
41.
42.
The behavior of water entrapped in reverse micelles (RMs) formed by two catanionic ionic liquid‐like surfactants, benzyl‐n‐hexadecyldimethylammonium 1,4‐bis‐2‐ethylhexylsulfosuccinate (AOT‐BHD) and cetyltrimethylammonium 1,4‐bis‐2‐ethylhexylsulfosuccinate (AOT‐CTA), was investigated by using dynamic (DLS) and static (SLS) light scattering, FTIR, and 1H NMR spectroscopy techniques. To the best of our knowledge, this is the first report in which AOT‐CTA has been used to create RMs and encapsulate water. DLS and SLS results revealed the formation of RMs in benzene and the interaction of water with the RM interface. From FTIR and 1H NMR spectroscopy data, a difference in the magnitude of the water–catanionic surfactant interaction at the interface is observed. For the AOT‐BHD RMs, a strong water–surfactant interaction can be invoked whereas for AOT‐CTA this interaction seems to be weaker. Consequently, more water molecules interact with the interface in AOT‐BHD RMs with a completely disrupted hydrogen‐bond network, than in AOT‐CTA RMs in which the water structure is partially preserved. We suggest that the benzyl group present in the BHD+ moiety in AOT‐BHD is responsible for the behavior of the catanionic interface in comparison with the interface created in AOT‐CTA. These results show that a simple change in the cationic component in the catanionic surfactant promotes remarkable changes in the RMs interface with interesting consequences, in particular when using the systems as nanoreactors.  相似文献   
43.
Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room‐temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. 1H, 11B, and 19F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim][BF4]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X‐100 (TX‐100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim]+ and [BF4]? in the presence of TX‐100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim]+ and [BF4]? and migration of Cl? within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures.  相似文献   
44.
Reverse micelles (RMs) are very good nanoreactors because they can create a unique microenvironment for carrying out a variety of chemical and biochemical reactions. The aim of the present work is to determine the influence of different RM interfaces on the hydrolysis of 2‐naphthyl acetate (2‐NA) by α‐chymotrypsin (α‐CT). The reaction was studied in water/benzyl‐n‐hexadecyldimethylammonium chloride (BHDC)/benzene RMs and, its efficiency compared with that observed in pure water and in sodium 1,4‐bis‐2‐ethylhexylsulfosuccinate (AOT) RMs. Thus, the hydrolysis rates of 2‐NA catalyzed by α‐CT were determined by spectroscopic measurements. In addition, the method used allows the joint evaluation of the substrate partition constant Kp between the organic and the micellar pseudophase and the kinetic parameters: catalytic rate constant kcat, and the Michaelis constant KM of the enzymatic reaction. The effect of the surfactant concentration on the kinetics parameters was determined at constant W0=[H2O]/[surfactant], and the variation of W0 with surfactant constant concentration was investigated. The results show that the classical Michaelis–Menten mechanism is valid for α‐CT in all of the RMs systems studied and that the reaction takes place at both RM interfaces. Moreover, the catalytic efficiency values kcat/KM obtained in the RMs systems are higher than that reported in water. Furthermore, there is a remarkable increase in α‐CT efficiency in the cationic RMs in comparison with the anionic system, presumably due to the unique water properties found in these confined media. The results show that in cationic RMs the hydrogen‐bond donor capacity of water is enhanced due to its interaction with the cationic interface. Hence, entrapped water can be converted into “super‐water” for the enzymatic reaction studied in this work.  相似文献   
45.
For the plus-two and plus-three lanthanide ions, ΔHf is inversely related to the sums of the ionic radii by ΔH°f = Qn + A/(rLn3++ rxn?) + B. This equation reproduces the known values for the plus-three oxides and the halides, and predicts the absolute hydration energies of the aqueous lanthanide(III) ions. The model is also used to calculate ΔHf of the lanthanide(II) oxides and fluorides. Based upon the enthalpies of disproportionation, EuO, YbO, SmF2, EuF2 and YbF2 are predicted to be stable.  相似文献   
46.
This exploratory study examined how pre-service teachers (PSTs) pose mathematical problems for free and structured mathematical problem-posing conditions. It was hypothesized that PSTs would pose more complex mathematical problems under structured posing conditions, with increasing levels of complexity, than PSTs would pose under free posing conditions, because the structured posing condition would guide PSTs to more closely consider the mathematical relationships in a posing situation. Sixty-five PSTs – 61 participating in a written assessment and 4 participating in task-based interviews – responded to problem-posing tasks under free or structured posing conditions. Two-way independent samples t-tests and chi-square tests were used to test the hypothesis, along with a qualitative analysis of the task-based interviews. We found that while the task format had limited impact on the complexity of problems posed, PSTs in the structured-posing condition may have more closely attended to the mathematical concepts in each task, and may have also impacted their process of posing problems than those in the free posing condition.  相似文献   
47.
The 3,3', 4',7 tetrahydroxiflavone (fisetin) is a natural therapeutically active and fluorescent polyhydroxyflavone, with important spectroscopic and biological behavior. Fisetin shows dual emission, with a normal band (N) from the S1 --> S0 transition and the one generated in the excited state (phototautomer; PT) from the intramolecular proton transfer (ESIPT) process. The influence of different interfaces on the ESIPT process of fisetin was investigated in reverse micelles media (RMs) made of the anionic sodium 1,4-bis (2-ethylhexyl) sulfosuccinate (AOT) and cationic benzyl n-hexadecyl dimethylammonium chloride (BHDC) surfactants, in benzene. The studies were carried out by absorption, emission spectroscopy, steady-state anisotropy and time-resolved fluorescence measurements. Fisetin behavior was also investigated in homogeneous media with special emphasis in water and benzene, which are the polar core and the organic pseudofase in the RMs, respectively. In addition, the effect of concentration in benzene and the variation of the pH in water were studied. Fluorescence lifetime measurements show that in water the ESIPT process is independent on the concentration, while in benzene it was possible to detect fluorescent aggregate species (Nas) formed in the ground state. The effect of the pH in water allowed us to identify the anionic fisetin (A-) emission. The studies in RMs show that fisetin interacts specifically with the head of the surfactants, which always results in diminishing the emission of the PT. Also the formation of A- is detected particularly at W0 > 0. Appreciable high anisotropy values are obtained in RMs, as compared with those in fluid homogeneous media, which are independent of the water content confirming that fisetin molecules are anchored in the anionic as well as in the cationic interfaces.  相似文献   
48.
We found that the absorption spectra of 2-acetylphenol (2-HAP), 4-acetylphenol (4-HAP), and p-nitrophenol (p-NPh) in water/sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane reverse micelles (RMs) at various W(0) (W(0) = [H(2)O]/[surfactant]) values studied changed with time if (-)OH ions were present in the RM water pool. There is an evolution of ionized phenol (phenolate) bands to nonionized phenol absorption bands with time and this process is faster at low W(0) values and with phenols with higher bulk water pK(a) values. That is, in bulk water and at the hydroxide anion concentration used, only phenolate species are observed, whereas in AOT RMs at this fixed hydroxide anion concentration, ionized phenols convert into nonionized phenol species over time. Furthermore, we demonstrate that, independent of the (-)OH concentration used to prepare the AOT RMs, the nonionized phenols are the more stable species in the RM media. We explain our results by considering that strong hydrogen-bonding interactions between phenols and the AOT polar head groups result in the existence of only nonionized phenols at the AOT RM interface. The situation is quite different when the phenols are dissolved in cationic benzyl-n-hexadecyldimethylammonium chloride RMs. Therein, only phenolates species are present at the (-)OH concentrations used. The results clearly demonstrate that the classical definition of pH does not apply in a confined environment, such as in the interior of RMs and challenge the general idea that pH can be determined inside RMs.  相似文献   
49.
50.
Summary In this paper, the use of a combined X-ray and neutron source for security inspections based on Inertial Electrostatic Confinement (IEC) fusion is discussed. Current inspection systems typically use X-ray techniques, but thermal neutron analysis (TNA) and fast neutron analysis (FNA), allow expanded detection of certain types of explosives. The integrated unit proposed here uses three separate IEC sources producing 14 and 2.45 MeV neutrons plus soft X-rays. This combination allows multiple detection methods with the composite signal analysis being done by a fuzzy logic system, significantly reducing false signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号