首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  国内免费   1篇
化学   10篇
晶体学   1篇
物理学   2篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有13条查询结果,搜索用时 781 毫秒
11.
Asymmetric capacitor based on TiO2 with the size range from 90 to 410 nm and mesoporous MnO2 (ca. 200–380 nm) electrodes has been successfully constructed and characterized in LiClO4 aqueous electrolyte. The samples of both metal oxides were fully characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, and so on. The electrochemical capacitive performances of both electrode materials were evaluated by cyclic voltammetry and galvanostatic charge-discharge in 1 mol/L LiClO4 with a working voltage of 2.0 V. The discharge profile of the asymmetric capacitor exhibited an excellent capacitive behavior and good cycling stability after 2000 cycles. Moreover, the TiO2//MnO2 asymmetric capacitor possesses both higher energy density and power density (7.7 Wh/kg, 762.5 W/kg) than that of Maxsorb//Maxsorb symmetrical capacitor (7.0 Wh/kg, 400.0 W/kg).
Graphical abstract A novel asymmetric capacitor based on TiO2 and mesoporous MnO2 electrodes has been successfully constructed and characterized in LiClO4 aqueous electrolyte.
  相似文献   
12.
With the development of technology and the rise of the meta-universe concept, the brain-computer interface (BCI) has become a hotspot in the research field, and the BCI based on motor imagery (MI) EEG has been widely concerned. However, in the process of MI-EEG decoding, the performance of the decoding model needs to be improved. At present, most MI-EEG decoding methods based on deep learning cannot make full use of the temporal and frequency features of EEG data, which leads to a low accuracy of MI-EEG decoding. To address this issue, this paper proposes a two-branch convolutional neural network (TBTF-CNN) that can simultaneously learn the temporal and frequency features of EEG data. The structure of EEG data is reconstructed to simplify the spatio-temporal convolution process of CNN, and continuous wavelet transform is used to express the time-frequency features of EEG data. TBTF-CNN fuses the features learned from the two branches and then inputs them into the classifier to decode the MI-EEG. The experimental results on the BCI competition IV 2b dataset show that the proposed model achieves an average classification accuracy of 81.3% and a kappa value of 0.63. Compared with other methods, TBTF-CNN achieves a better performance in MI-EEG decoding. The proposed method can make full use of the temporal and frequency features of EEG data and can improve the decoding accuracy of MI-EEG.  相似文献   
13.
We developed a facile synthetic route of porous cobalt oxide (Co3O4) nanorods via a microemulsion-based method in combination with subsequent calcination process. The porous structure was formed by controlled decomposition of the microemulsion-synthesized precursor CoC2O4 nanorods without destruction of the original morphology. The as-prepared Co3O4 nanorods, consisting of small nanoparticles with diameter of 80–150 nm, had an average diameter of 200 nm and a length of 3–5 μm. The morphology and structure of synthesized samples were characterized by transmission electron microscopy and scanning electron microscopy. The phase and composition were investigated by X-ray powder diffraction and X-ray photoelectron spectroscopy. The optical property of Co3O4 nanorods was investigated. Moreover, the porous Co3O4 nanorods exhibited high electrochemical performance when applied as cathode materials for lithium-ion batteries, which gives them good potential applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号