首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   1篇
化学   41篇
力学   78篇
数学   2篇
物理学   15篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   10篇
  1985年   11篇
  1984年   14篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   4篇
  1972年   2篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
1.
Enantioselective biocatalysis in nonaqueous media is becoming increasingly important in preparative synthetic chemistry. This article discusses (1) the general catalytic properties of enzymes in nonaqueous environments, (2) the basic principles that govern lipase-catalyzed enantioselective esterification and transesterification reactions in organic media for the preparation of optically active acids and alcohols, (3) the determination of kinetic and thermodynamic parameters, and (4) the quantitative analysis of published data.  相似文献   
2.
3.
4.
Novel drug delivery systems capable of continuous sustained release of therapeutics have been studied extensively for use in the prevention and management of chronic diseases. The use of these systems holds promise as a means to achieve higher patient compliance while improving therapeutic index and reducing systemic toxicity. In this work, an implantable nanochannel drug delivery system (nDS) is characterized and evaluated for the long-term sustained release of atorvastatin (ATS) and trans-resveratrol (t-RES), compounds with a proven role in managing atherogenic dyslipidemia and promoting cardioprotection. The primary mediators of drug release in the nDS are nanofluidic membranes with hundreds of thousands of nanochannels (up to 100,000/mm2) that attain zero-order release kinetics by exploiting nanoconfinement and molecule-to-surface interactions that dominate diffusive transport at the nanoscale. These membranes were characterized using gas flow analysis, acetone diffusion, and scanning and transmission electron microscopy (SEM, TEM). The surface properties of the dielectric materials lining the nanochannels, SiO2 and low-stress silicon nitride, were further investigated using surface charge analysis. Continuous, sustained in vitro release for both ATS and t-RES was established for durations exceeding 1 month. Finally, the influence of the membranes on cell viability was assessed using human microvascular endothelial cells. Morphology changes and adhesion to the surface were analyzed using SEM, while an MTT proliferation assay was used to determine the cell viability. The nanochannel delivery approach, here demonstrated in vitro, not only possesses all requirements for large-scale high-yield industrial fabrication, but also presents the key components for a rapid clinical translation as an implantable delivery system for the sustained administration of cardioprotectants.  相似文献   
5.
In this study, we propose a simple strategy based on flow injection and field‐amplified sample‐stacking CE–ESI‐MS/MS to analyze haloacetic acids (HAAs) in tap water. Tap water was passed through a desalination cartridge before field‐amplified sample‐stacking CE–ESI‐MS/MS analysis to reduce sample salinity. With this treatment, the signals of the HAAs increased 300‐ to 1400‐fold. The LODs for tap water analysis were in the range of 10 to 100 ng/L, except for the LOD of monochloroacetic acid (1 μg/L in selected‐ion monitoring mode detection). The proposed method is fast, convenient, and sensitive enough to perform on‐line analysis of five HAAs in the tap water of Taipei City. Four HAAs, including trichloroacetic acid, dichloroacetic acid, dibromoacetic acid, and monobromoacetic acid, were detected at concentrations of approximately 1.74, 1.15, 0.16, and 0.15 ppb, respectively.  相似文献   
6.
A methodology is presented for analyzing the inlfuence of mechanical joint failure on the global instability of flight vehicles. Considered are the ways with which loading, geometry and material of the vehicle can affect the structure instability and/or integrity. The peaks and valleys of the volume energy density function are assumed to coincide with failure by fracture and/or yielding while the distance between their local and global stationary values govern the structure instability. A single length parameter l can thus be applied to provide a measure of stability. The simultaneous occurrence of high energy density and large l at the same location should be avoided as it may have undesirable consequences.A flight vehicle consisting of four cylindrical shell-like structures connected by three tongue-and-groove joints is analyzed. The time-dependent load can be axisymmetric or non-axisymmetric. A semi-analytical finite element program is developed and used to solve for the transient stress and strain distribution from which contours of the volume energy density in the structure are obtained as a function of time. The magnitudes and locations of their local and global stationary values are then calculated and discussed in connection with potential failure by fracture. Stability behavior does not alter appreciably for axisymmetric flight. Considerable fluctuations in the energy density and the dynamic stability length parameter are found when non-axisymmetric loads are considered.  相似文献   
7.
8.
The advent of nanotechnology has necessitated a better understanding of how material microstructure changes at the atomic level would affect the macroscopic properties that control the performance. Such a challenge has uncovered many phenomena that were not previously understood and taken for granted. Among them are the basic foundation of dislocation theories which are now known to be inadequate. Simplifying assumptions invoked at the macroscale may not be applicable at the micro- and/or nanoscale. There are implications of scaling hierrachy associated with inhomegeneity and nonequilibrium of physical systems. What is taken to be homogeneous and equilibrium at the macroscale may not be so when the physical size of the material is reduced to microns. These fundamental issues cannot be dispensed at will for the sake of convenience because they could alter the outcome of predictions. Even more unsatisfying is the lack of consistency in modeling physical systems. This could translate to the inability for identifying the relevant manufacturing parameters and rendering the end product unpractical because of high cost. Advanced composite and ceramic materials are cases in point.Discussed are potential pitfalls for applying models at both the atomic and continuum levels. No encouragement is made to unravel the truth of nature. Let it be partiuclates, a smooth continuum or a combination of both. The present trend of development in scaling tends to seek for different characteristic lengths of material microstructures with or without the influence of time effects. Much will be learned from atomistic simulation models to show how results could differ as boundary conditions and scales are changed. Quantum mechanics, continuum and cosmological models provide evidence that no general approach is in sight. Of immediate interest is perhaps the establishment of greater precision in terminology so as to better communicate results involving multiscale physical events.  相似文献   
9.
This work is concerned with non-self-similar crack growth in medium strength metal plates while the loading step, plate thickness and material properties are altered. The three-dimensional elastic-plastic finite element stress analysis is combined with the strain energy density criterion for modeling the material damage process from crack initiation to final global instability including the intervening stage of slow crack growth. Both inelastic deformation and crack growth are accounted for each increment of loading such that the redistribution of stresses and strains are made for each new crack profile. Numerical results are obtained for the center cracked plate configuration under uniform extension with twenty-seven (27) different combinations of specimen thickness, loading step and material type. The fracture toughness Sc being related to K1c for three different materials are predicted analytically from the corresponding uniaxial tensile test data. Effective strain energy density factor and half crack length are defined so that the results can be compared with their two-dimensional counterparts. Crack growth resistance curves (R-curves) are constructed by plotting as a function of . The condition is found to prevail during slow crack growth. Translation and/or rotation of the lines can yield results other than those calculated and serve a useful purpose for scaling component size and test time. The minimum thickness requirement for the ASTM valid K1c test is also discussed in connection with predictions based on the strain energy density criterion. The corresponding K1c for smaller specimens that exhibit moderate ductility and nonlinearity can also be obtained analytically. In such cases, the influence of loading step can be significant and should not be neglected. Notwithstanding the shortcomings of the theory of plasticity, the qualitative features of non-self-similar crack growth are predicted by the strain energy density criterion. Any refinements on the analytical modeling of the material damage process would only affect the results qualitatively, a subject that is left for future investigation.  相似文献   
10.
The rate at which energy is accumulated within a unit volume of material in fatigue is assumed to depend not only on load-time history but also on the specimen size and geometry in addition to material type. A threshold level for the hysteresis strain energy density function accumulated in the material is used for predicting macrocrack growth. This is accomplished by application of the incremental theory of plasticity for each increment of crack growth. The accumulated hysteresis strain energy density factor ΔS to crack growth increment Δa ratio is found to be constant for fixed specimen size and loading, i.e., . Results are obtained for the cylindrical bar specimens with a penny-shaped defect at the center subjected to a constant amplitude and frequency loading. The resistance curves in the ΔS versus Δa plot are parallel lines as specimen size is altered. This information provides a rational means for predicting the influence of specimen size on fatigue lifetime.The results are also compared with those found for geometrically similar plate specimens with line cracks. Cylinder bar specimens of the same material are found to sustain more load cycles prior to catastrophic failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号