首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
化学   26篇
力学   1篇
物理学   8篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   4篇
  2004年   7篇
  2001年   2篇
  2000年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
11.
Electrical voltage externally applied between parallel-plate electrodes can cause colloidal particles located near one of the electrodes to aggregate; thus monodisperse particles can be driven to form hexagonally close-packed arrays which can be useful in the fabrication of photonic materials. The mechanism for lateral motion of particles on the electrode surface is electroosmotic flow driven by the action of the applied electric field acting either on the equilibrium charges in the diffuse layer of the particles (ECEO) or on charge induced by the electric field on the surface of the electrode (ICEO). For steady currents, ECEO dominates whereas ICEO dominates for high-frequency alternating current. For intermediate frequencies (10 Hz to 1 kHz) both mechanisms are active. This critical review attempts to integrate concepts from electrochemistry and colloid chemistry to understand this electrokinetic phenomenon.  相似文献   
12.
In recent years, there has been increased interest in using microphase-separated block copolymer thin films as submicrometer/suboptical masks in next generation semiconductor and magnetic media fabrication. With the goals of removing metastable defects in block copolymer thin film simulations and potentially examining equilibrium defect populations, we report on two new numerical techniques that can be used in field-theoretic computer simulations: (1) a spectral amplitude filter (SF) that encourages the simulation to relax into high symmetry states (representing zero defect states), and (2) different variants of force-biased, partial saddle point Monte Carlo algorithms that allow for barrier crossing toward lower energy defect-free states. Beyond their use for removing defects, the force-biased Monte Carlo algorithms will be seen to provide a promising tool for studying equilibrium defect populations. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2495–2511, 2006  相似文献   
13.
14.
The directed assembly of micrometer-scale particles into hexagonal lattices on electrodes was probed by subjecting them to electric fields oscillating at 100 Hz. Solutions of KOH, NaHCO(3), and KCl were used because previous investigations of particle pair behavior had shown that an electrolyte-dependent phase angle dictates whether two particles aggregate or separate at low frequencies. Here it was found that particle ensembles, aggregating or separating, adopt a 2D hexagonal lattice in both cases; the difference appears in the particle spacing. For electrolytes such as NaHCO(3) and KCl, where two isolated particles aggregate, the gap between particle edges is between 1 and 1.5 particle diameters; in KOH, where two particles tend to separate, the interparticle spacing is several diameters.  相似文献   
15.
A model incorporating a phase angle between an applied electric field and the motion of particles driven by it explains electrolyte-dependent pairwise particle motion near electrodes. The model, predicting that two particles aggregate when this phase angle is greater than 90 degrees but separate when the phase angle is less than 90 degrees , was based largely on contrasting behavior in two electrolytes (KOH and NaHCO3) used with indium tin oxide (ITO) electrodes. The present contribution expands the experimental evidence for this model to KOH, NaHCO3, NaOH, NH4OH, KCl, and H2CO3 solutions with Pt, as well as ITO electrodes. The phase angle correlation was verified in all cases. Comparisons of the model predictions to experimental data show that the sign and order of magnitude of rates of change in the separation distances between particle pairs are correctly predicted.  相似文献   
16.
Theory suggests that thermocapillary flow about neighboring bubbles in liquids on hot walls pulls the bubbles together. A temperature gradient perpendicular to the wall establishes a surface tension gradient at the bubble-liquid interface, which in turn sustains a shear stress gradient that pumps adjacent fluid away from the wall. Neighboring bubbles are mutually entrained in this flow and also respond thermophoretically to lateral temperature gradients in the temperature near field. The theory predicts that the aggregation velocity scales with the temperature gradient, the radius of the bubbles, the derivative of the surface tension with respect to temperature, and the reciprocal of the liquid's viscosity. Bubble aggregation experiments under controlled conditions were performed to test the theory. Scaling the experimental bubble trajectories according to the theory substantially collapses all of the data onto a master curve when the interbubble separation is greater than 3 radii, which suggests that the theory is correct. Calculated velocities agree with the experimental results when hindrance of bubble motion due to the wall is included. Values for the parameter that describes the hindrance effect are obtained from fitting the data to the theory, from independent measurements, and from direct hydrodynamic calculation. The results of the three determinations agree within 15% of the possible range of the value of the parameter. Copyright 2000 Academic Press.  相似文献   
17.
In this work we analyze the finite-size and discretization effects that occur in field-theoretic polymer simulations. Following our previous work, we study these effects for a polymer solution in the canonical ensemble confined to a slit (with nonadsorbing walls) of width L, and focus on the behavior of two quantities: the chemical potential mu, and the correlation length xi. Our results show that the finite-size effects disappear for both quantities once the lateral size of the system L is larger than approximately 2xi. On the other hand, the chemical potential is dominated by the lattice discretization Deltax. The origins of this dependence are discussed in detail, and a scheme is proposed in which this effect is avoided. Our results also show that the density profiles do not depend on the lattice discretization if Deltax < approximately xi/4. This implies that the correlation length xi, extracted from the density profiles, is free of lattice size and lattice discretization artifacts once L is > approximately 2xi and Deltax < approximately xi/4.  相似文献   
18.
Mass spectra were acquired for a therapeutic 4-azasteroid (dutasteride), and some related compounds, using various ionization conditions (EI, CI, APCI and ESI) in both positive and negative ion modes. The ionization and fragmentation behavior of the compound dutasteride, its precursors and several analogs is reported. Positive atmospheric pressure chemical ionization (APCI+) and positive electrospray ionization (ESI+) produced distinctive collision-induced dissociation (CID) spectra for the respective [MH]+ ions of dutasteride. The spectral differences are attributed to ion populations having either different structures or different internal energy distributions (as a consequence of the method of ionization). Irrespective of their origin, the protonated molecules undergo interesting fragmentation reactions when collisionally activated. The identity of the major fragmentation products was confirmed by accurate mass measurement. The negative APCI mass spectrum of dutasteride displays extensive dehydrohalogenation, apparently due to the thermal component of the APCI process. Some of the resulting radical anions display remarkable stability toward collisional decomposition. Details of the fragmentation behavior for the negative ion species and their relationship to the positive ion results are discussed.  相似文献   
19.

Background  

The 5-HT3 receptor is a member of a neurotransmitter-gated ion channel family which includes nicotinic acetylcholine, GABAA, and glycine receptors. While antibodies specific for the 5-HT3A receptor subunit are plentiful, and have revealed a wealth of structural and functional information, few antisera exist for the detection of 5-HT3B receptor subunits. Here we describe the generation and characterisation of a rabbit polyclonal antiserum that specifically recognises 5-HT3B receptor subunits  相似文献   
20.
A temperature gradient normal to a planar wall produces two-dimensional motion and aggregation or separation of bubbles on the hot or cold wall, respectively. The origin of the motion is fluid convection driven by the thermal Marangoni stress on the surface of the bubbles. Previous theories for the dynamics of two or more bubbles have been based on an analysis of flow about a single bubble and the resulting convection that entrains its neighbors. Here we extend the theory by solving the quasi-steady equations for the temperature and velocity fields for two bubbles. The result is a quantitative model for the relative velocity between two bubbles as a function of both the distance between them and the gap between each bubble and the surface. Interactions between the bubbles strongly increase the approach velocity, which is counter-intuitive because the hydrodynamic resistance increases as the bubbles approach each other. An asymptotic analysis indicates the thermocapillary force bringing them together or pushing them apart is singular in the separation when the bubbles are close to each other. The two-bubble theory agrees reasonably well with the experimentally measured velocities of pairs of bubbles on hot or cold surfaces, though it slightly overestimates the velocities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号