首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2099篇
  免费   289篇
  国内免费   209篇
化学   1514篇
晶体学   25篇
力学   135篇
综合类   19篇
数学   233篇
物理学   671篇
  2024年   7篇
  2023年   55篇
  2022年   66篇
  2021年   76篇
  2020年   131篇
  2019年   95篇
  2018年   72篇
  2017年   67篇
  2016年   118篇
  2015年   102篇
  2014年   113篇
  2013年   165篇
  2012年   170篇
  2011年   210篇
  2010年   112篇
  2009年   104篇
  2008年   135篇
  2007年   126篇
  2006年   79篇
  2005年   68篇
  2004年   60篇
  2003年   58篇
  2002年   63篇
  2001年   67篇
  2000年   48篇
  1999年   44篇
  1998年   26篇
  1997年   26篇
  1996年   19篇
  1995年   14篇
  1994年   17篇
  1993年   11篇
  1992年   14篇
  1991年   6篇
  1990年   11篇
  1988年   8篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1957年   3篇
排序方式: 共有2597条查询结果,搜索用时 0 毫秒
91.
In this article, a decoupled two grid finite element method (FEM) is proposed and analyzed for the nonsteady natural convection problem using the coarse grid numerical solutions to decouple the nonlinear coupled terms, and the corresponding optimal error estimates are derived. Compared with the standard Galerkin FEM and the usual two‐grid FEM, our algorithm not only keeps good accuracy but also saves a lot of computational cost. Some numerical examples are provided to verify the performances of the decoupled two‐grid FEM. Both theoretical analysis and numerical experiments show the efficiency and effectiveness of the decoupled two‐grid FEM for the nonsteady natural convection problem. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 2135–2168, 2015  相似文献   
92.
Three Mn(II) complexes of [MnL(Bipy)(H2O)] n (I), [Mn3(Phen)2(HL)2(L)2]n (II), and [Mn(Phen)2(HL)(OH)] (III), where L = 4,4′-(2-acetylpropane-1,3-diyl)dibenzoic acid, Bipy = 2,2′-bipyridine, and Phen = 1,10-phenanthroline, were hydrothermally synthesized and characterized by single crystal X-ray diffractions, infrared spectroscopy, thermogravimetric analyses, and magnetic analyses. Complexes I and II are one dimensional (1D) coordination polymers which can form the supramolecules with the help of the intermolecular hydrogen bond interactions. Finally, the landé factors are simulated by magentochemical analysis to be 2.15 and 1.80 for I and II with S = 5/2, respectively.  相似文献   
93.
A novel three-dimensional (3D) d-f heterometallic metal-organic framework (MOF) formulated as [EuCd1.5L2(H2O)3] · 2H2O ( 1 ) [H3L = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid] was successfully synthesized and characterized. Structural analysis displays that 1 features a 3D (3, 12)-connected framework constructed by [Eu2Cd3(tetrazole)4(COO)8] units. The powder X-ray diffraction measurement of 1 immersed in different solvents reveals that 1 possess good solvent stability. It is worth noting that 1 displays highly selective detection for ronidazole (RDZ) and 4-nitrophenol (4-NP) through luminescence quenching. The possible mechanism of luminescent sensing is also well discussed.  相似文献   
94.
卓桢成  阎峰  关瑾  李思 《合成化学》2020,28(1):62-66
以3-异丙基苯乙酮(1)为原料,经3步反应合成了花青醛[3-(3-异丙基苯基)丁醛(4)],并优化了反应条件。确定合成3-(3-异丙基苯基)-2-丁烯酸乙酯(2)的最优条件为:n(1)/n(磷酰基乙酸三乙酯)/n(氢化钠)=5/6/6,于室温反应12 h,收率84.5%;合成3-(3-异丙基苯基)-1-丁醇(3)的最佳条件为:n(2)/n(硼氢化钠)/n(六水合二氯化钴)/n(二异丙基胺)=10/20/1/2,于55 ℃反应24 h,收率87.8%;合成4的最优条件为: n(3)/n(乙酸酐)/n(亚硝酸钠)=5/4/15,投料顺序为:乙酸酐、3、亚硝酸钠,反应时间为2 min,收率91.0%。产物结构经1H NMR, 13C NMR和MS(ESI)确证。  相似文献   
95.
Despite significant progress achieved in Fischer–Tropsch synthesis (FTS) technology, control of product selectivity remains a challenge in syngas conversion. Herein, we demonstrate that Zn2+‐ion exchanged ZSM‐5 zeolite steers syngas conversion selectively to ethane with its selectivity reaching as high as 86 % among hydrocarbons (excluding CO2) at 20 % CO conversion. NMR spectroscopy, X‐ray absorption spectroscopy, and X‐ray fluorescence indicate that this is likely attributed to the highly dispersed Zn sites grafted on ZSM‐5. Quasi‐in‐situ solid‐state NMR, obtained by quenching the reaction in liquid N2, detects C2 species such as acetyl (‐COCH3) bonding with an oxygen, ethyl (‐CH2CH3) bonding with a Zn site, and epoxyethane molecules adsorbing on a Zn site and a Brønsted acid site of the catalyst, respectively. These species could provide insight into C?C bond formation during ethane formation. Interestingly, this selective reaction pathway toward ethane appears to be general because a series of other Zn2+‐ion exchanged aluminosilicate zeolites with different topologies (for example, SSZ‐13, MCM‐22, and ZSM‐12) all give ethane predominantly. By contrast, a physical mixture of ZnO‐ZSM‐5 favors formation of hydrocarbons beyond C3+. These results provide an important guide for tuning the product selectivity in syngas conversion.  相似文献   
96.
A nanocage coupling effect from a redox RuII‐PdII metal–organic cage (MOC‐16) is demonstrated for efficient photochemical H2 production by virtue of redox–guest modulation of the photo‐induced electron transfer (PET) process. Through coupling with photoredox cycle of MOC‐16, tetrathiafulvalene (TTF) guests act as electron relay mediator to improve the overall electron transfer efficiency in the host–guest system in a long‐time scale, leading to significant promotion of visible‐light driven H2 evolution. By contrast, the presence of larger TTF‐derivatives in bulk solution without host–guest interactions results in interference with PET process of MOC‐16, leading to inefficient H2 evolution. Such interaction provides an example to understand the interplay between the redox‐active nanocage and guest for optimization of redox events and photocatalytic activities in a confined chemical nanoenvironment.  相似文献   
97.
To show the synthetic utility of the catalytic C?C activation of less strained substrates, described here are the collective and concise syntheses of the natural products (?)‐microthecaline A, (?)‐leubehanol, (+)‐pseudopteroxazole, (+)‐seco‐pseudopteroxazole, pseudopterosin A–F and G—J aglycones, and (+)‐heritonin. The key step in these syntheses involve a Rh‐catalyzed C?C/C?H activation cascade of 3‐arylcyclopentanones, which provides a rapid and enantioselective route to access the polysubstituted tetrahydronaphthalene cores presented in these natural products. Other important features include 1) the direct C?H amination of the tetralone substrate in the synthesis of (?)‐microthecaline A, 2) the use of phosphoric acid to enhance efficiency and regioselectivity for problematic cyclopentanone substrates in the C?C activation reactions, and 3) the direct conversion of serrulatane into amphilectane diterpenes by an allylic cyclodehydrogenation coupling.  相似文献   
98.
99.
Wang  Xianzhi  Si  Shubin  Li  Yongbo 《Nonlinear dynamics》2022,108(2):1447-1462
Nonlinear Dynamics - Intelligent fault diagnosis provides great convenience for the prognostic and health management of the rotating machinery. Recently, the multiscale diversity entropy has been...  相似文献   
100.
To screen novel antifungal agents targeting the succinate dehydrogenase(SDH),a series of pyrazole-4-carbohydrazides were rationally designed,synthesized,and characterized under the guidance of the structures of succinate dehydrogenase inhibitors(SDHIs).Bioassay results in vitro indicated that most of the target compounds exhibited excellent activity against Rhizoctonia solani(R.solani),Fusarium graminearum(F.graminearum),Botrytis cinerea(B.cinerea)and Colletotrichum capsica(C.cinerea).Compounds 7d,7l,7t and 7x were identified as the most promoting candidates,and their anti-F.graminearum EC50 values were as low as 0.56,0.47,0.46 and 0.49μg/mL,respectively,presenting the similar antifungal activity as that of the commonly used fungicide carbendazim(0.43μg/mL).The 3D-QSAR models were built for a systematic structure-activity relationship profile to explore more potent pyrazole-4-carbohydrazides as novel fungicides.Molecular docking of 7d,7l and 7r with SDH was performed to reveal the binding modes in active pocket and analyze the interactions between the molecules and the SDH protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号