首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1952篇
  免费   223篇
  国内免费   245篇
化学   1591篇
晶体学   16篇
力学   84篇
综合类   13篇
数学   167篇
物理学   549篇
  2024年   2篇
  2023年   25篇
  2022年   50篇
  2021年   55篇
  2020年   65篇
  2019年   72篇
  2018年   66篇
  2017年   53篇
  2016年   84篇
  2015年   87篇
  2014年   94篇
  2013年   137篇
  2012年   156篇
  2011年   186篇
  2010年   96篇
  2009年   119篇
  2008年   121篇
  2007年   88篇
  2006年   101篇
  2005年   85篇
  2004年   94篇
  2003年   75篇
  2002年   105篇
  2001年   85篇
  2000年   51篇
  1999年   56篇
  1998年   32篇
  1997年   21篇
  1996年   24篇
  1995年   22篇
  1994年   19篇
  1993年   14篇
  1992年   12篇
  1991年   13篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   7篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
  1957年   1篇
排序方式: 共有2420条查询结果,搜索用时 15 毫秒
151.
In this work, we have reported the influence of the addition of base (KOH) on the physicochemical property of ceria synthesized by alcohothermal process, and the alcohothermal mechanism was also put forward. Furthermore, the prepared CeO2 was used as the support to prepare CuO/CeO2 catalysts via the wet impregnation method. The samples were characterized by N2 adsorption-desorption, X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and temperature-programmed reduction by H2 (H2-TPR). The catalytic properties of the CuO/CeO2 catalysts for low-temperature CO oxidation were studied using a microreactor-GC system. The crystal size of CeO2-A was much smaller than that of CeO2-B, and the corresponding copper oxide catalysts exhibited higher catalytic activity than that of the CeO2-B-supported catalysts under the same reaction conditions. The alcohothermal mechanism indicated that KOH plays a key role in determining the physicochemical and catalytic properties of ceria-based materials.  相似文献   
152.
A liquid chromatographic-electrospray ionisation-tandem mass spectrometry method (LC-ESI-MS/MS) with solid extraction was developed and validated for the detection and determination of closantel residues in bovine tissues and milk. An acetonitrile-acetone mixture (80:20, v/v) was used for one-stage extraction of closantel residues in bovine tissues and milk samples, and the extract was cleaned by solid phase extraction with Oasis MAX cartridges. The mass spectrometer was operated in multiple reactions monitoring mode with negative electrospray interface. The limits of detection in different matrices were in the range of 0.008-0.009 microg/kg. The overall recoveries for bovine muscle, liver, kidney and milk samples spiked at four levels including MRL were in the range of 76.0-94.3%. The overall relative standard deviations were in the range of 3.57-8.61%. The linearity is satisfactory with a correlation coefficient (r(2)) of 0.9913-0.9987 at both concentration ranges of 0.02-100 microg/kg and 200-5000 microg/kg. The method is capable of identifying closantel residues at > or =0.02 microg/kg levels and was applied in the determination of closantel residues in animal origin foods.  相似文献   
153.
Efficient thermally activated delayed fluorescence (TADF) has been characterized for a carbazole/sulfone derivative in both solutions and doped films. A pure blue organic light emitting diode (OLED) based on this compound demonstrates a very high external quantum efficiency (EQE) of nearly 10% at low current density. Because TADF only occurs in a bipolar system where donor and acceptor centered (3)ππ* states are close to or higher than the triplet intramolecular charge transfer ((3)CT) state, control of the π-conjugation length of both donor and acceptor is considered to be as important as breaking the π-conjugation between them in blue TADF material design.  相似文献   
154.
The experimental results of thermal process on the microstructural and physical properties of ambient pressure dried hydrophobic silica aerogel monoliths are reported and discussed. With sodium silicate as precursor, ethanol/hexamethyldisiloxane/hydrochloric acid as surface modification agent, the crack-free and high hydrophobic silica aerogel monoliths was obtained possessing the properties as low density (0.096 g/cm3), high surface area (651 m2/g), high hydrophobicity (~147°) and low thermal conductivity (0.0217 Wm/K). Silica aerogels maintained hydrophobic behavior up to 430 °C. After a thermal process changing from room temperature to 300 °C, the hydrophobicity remained unchanged (~128°), of which the porosity was 95.69% and specific density about 0.094 g/cm3. After high temperature treatment (300–500 °C), the density of final product decreased from 0.094 to 0.089 g/cm3 and porosity increased to 96.33%. With surface area of 466 m2/g, porosity of 91.21% and density about 0.113 g/cm3, silica aerogels were at a good state at 800 °C. Thermal conductivities at desired temperatures were analyzed by the transient plane heat source method. Thermal conductivity coefficients of silica aerogel monoliths changed from 0.0217 to 0.0981 Wm/K as temperature increased to 800 °C, revealed an excellent heat insulation effect during thermal process.  相似文献   
155.
The origin of the peroxidase‐like activity of gold nanoparticles and the impact of surface modification are studied. Furthermore, some influencing factors, such as fabrication process, redox property of the modifier, and charge property of the substrate, are investigated. Compared to amino‐modified or citrate‐capped gold nanoparticles, unmodified gold nanoparticles show significantly higher catalytic activity toward peroxidase substrates, that is, the superficial gold atoms are a contributing factor to the observed peroxidase‐like activity. The different catalytic activities of amino‐modified and citrate‐capped gold nanoparticles toward 3,3′,5,5′‐tetramethylbenzidine (TMB) and 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) diammonium salt (ABTS) show that the charge characteristics of the nanoparticles and the substrate also play an important role in the catalytic reactions.  相似文献   
156.
The geometric and electronic structures and photophysical properties of anilido‐pyridine boron difluoride dyes 1 – 4 , a series of scarce 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) derivatives with large Stokes shift, are investigated by employing density functional theory (DFT) and time‐dependent DFT (TD‐DFT) calculations to shed light on the origin of their large Stokes shifts. To this end, a suitable functional is first determined based on functional tests and a recently proposed index—the charge‐transfer distance. It is found that PBE0 provides satisfactory overall results. An in‐depth insight into Huang–Rhys (HR) factors, Wiberg bond indices, and transition density matrices is provided to scrutinize the geometric distortions and the character of excited states pertaining to absorption and emission. The results show that the pronounced geometric distortion due to the rotation of unlocked phenyl groups and intramolecular charge transfer are responsible for the large Stokes shift of 1 and 2 , while 3 shows a relatively blue‐shifted emission wavelength due to its mild geometric distortion upon photoemission, although it has a comparable energy gap to 1 . Finally, compound 4 , which is designed to realize the rare red emission in BODIPY derivatives, shows desirable and expected properties, such as high Stokes shift (4847 cm?1), red emission at 660 nm, and reasonable fluorescence efficiency. These properties give it great potential as an ideal emitter in organic light‐emitting diodes. The theoretical results could complement and assist in the development of BODIPY‐based dyes with both large Stokes shift and high quantum efficiency.  相似文献   
157.
Quantum chemical calculations at the BP86/TZVPP//BP86/SVP level are performed for the tetrylone complexes [W(CO)5‐E(PPh3)2] ( W‐1 E ) and the tetrylene complexes [W(CO)5‐NHE] ( W‐2 E ) with E=C–Pb. The bonding is analyzed using charge and energy decomposition methods. The carbone ligand C(PPh3) is bonded head‐on to the metal in W‐1 C , but the tetrylone ligands E(PPh3)2 are bonded side‐on in the heavier homologues W‐1 Si to W‐1 Pb . The W? E bond dissociation energies (BDEs) increase from the lighter to the heavier homologues ( W‐1 C : De=25.1 kcal mol?1; W‐1 Pb : De=44.6 kcal mol?1). The W(CO)5←C(PPh3)2 donation in W‐1 C comes from the σ lone‐pair orbital of C(PPh3)2, whereas the W(CO)5←E(PPh3)2 donation in the side‐on bonded complexes with E=Si–Pb arises from the π lone‐pair orbital of E(PPh3)2 (the HOMO of the free ligand). The π‐HOMO energy level rises continuously for the heavier homologues, and the hybridization has greater p character, making the heavier tetrylones stronger donors than the lighter systems, because tetrylones have two lone‐pair orbitals available for donation. Energy decomposition analysis (EDA) in conjunction with natural orbital for chemical valence (NOCV) suggests that the W? E BDE trend in W‐1 E comes from the increase in W(CO)5←E(PPh3)2 donation and from stronger electrostatic attraction, and that the E(PPh3)2 ligands are strong σ‐donors and weak π‐donors. The NHE ligands in the W‐2 E complexes are bonded end‐on for E=C, Si, and Ge, but side‐on for E=Sn and Pb. The W? E BDE trend is opposite to that of the W‐1 E complexes. The NHE ligands are strong σ‐donors and weak π‐acceptors. The observed trend arises because the hybridization of the donor orbital at atom E in W‐2 E has much greater s character than that in W‐1 E , and even increases for heavier atoms, because the tetrylenes have only one lone‐pair orbital available for donation. In addition, the W? E bonds of the heavier systems W‐2 E are strongly polarized toward atom E, so the electrostatic attraction with the tungsten atom is weak. The BDEs calculated for the W? E bonds in W‐1 E , W‐2 E and the less bulky tetrylone complexes [W(CO)5‐E(PH3)2] ( W‐3 E ) show that the effect of bulky ligands may obscure the intrinsic W? E bond strength.  相似文献   
158.
To obtain information on the environmental impact of materials eluted from volcanic ashes of Mt. Oyama, Miyake Island, which erupted in July 2000, the dissolution behaviours of heavy metals and rare-earth elements from the volcanic ashes were examined. The most important characteristic of the Mt. Oyama eruption is that sulphur dioxide (SO2) gas has been continuously released, and all persons living on Miyake Island have been required to evacuate. To estimate in terms of the volcanic eruption using SO2 gas, the ash nature in Mt. Usu, Hokkaido, was also examined and compared with that in Mt. Oyama. When rain water mixed the ashes, the water from the ashes of Mt. Oyama became acidic because of the sulphuric acid. Therefore, SO2 gas in Mt. Oyama can accelerate the dissolution of protons and heavy metals in the ashes, whereas the rain water in Mt. Usu was not acidic and the dissolution of the heavy metals was not so evident compared with that in the case of Mt. Oyama. With this sulphuric acid, heavy metals such as As, Cd, Pb and Hg in the ashes in Mt. Oyama easily dissolved owing to the low pH. The ashes in Mt. Oyama had been released for eight years and the amount of fallen ashes was estimated to be 33 billion tons. The weights of the harmful heavy metals in the volcanic ashes, such as As, Cd, Pb and Hg, were estimated to be 3.8?×?102, 1.3?×?103, 1.1?×?103 and 29?kg, respectively, and these heavy metals were dissolved and diluted in seawater. Therefore, the concentration and species (chemical form) of these metals should be carefully monitored in the future. Moreover, SO2 gas, which has a direct effect on human health and has been monitored continuously, causes other effects, such as facilitation of metal ion elution and rock aeration.  相似文献   
159.
Bilayer-silane-coated Fe3O4 nanoparticles with inner layer of tetraethoxy silane(TEOS) and outer layer of vinyltriethoxysilane (VTEO) were generated to enhance their acid resistance.These nanoparticles were copolymerized with vinylbenzyl chloride(VBC) using suspension polymerization,and then post-crosslinked.The resulting hypercrosslinked magnetic resin M150 presented specific bimodal property with large specific surface area of 1109 m2/g.It exhibited more excellent adsorption capacity of p-nitrophenol compared to another two magnetic adsorbents Ql 50 and MIEX.Moreover,the acid stable property of the magnetite in M150 extended its application at low pH value.  相似文献   
160.
Liu  Tao  Wang  FengHua  Guo  LanPing  Li  XiaoLiang  Yang  XiaoJin  Lin  Ai Jun 《中国科学:化学(英文版)》2012,55(9):1968-1975
Two hydrocarbon-biodegrading bacterial strains,B1 and B2,were isolated from petroleum-contaminated soil collected from Tianjin,China.The strains were identified as Pseudomonas aeruginosa(B1) and Acinetobacter junii(B2).The degradation rate of n-hexadecane by B1 and B2 reached 96% and 78% respectively after 7 days,though the strains employed different mechanisms of degradation.The results showed that B2 was not able to use glucose as carbon source.B1 could produce glycolipid surfactants using glucose as the carbon source,according to the results of blue agar plate analysis and thin layer chromatography(TLC),and the bacterial culture of B1 had a high oil discharge and emulsification activity.Both B1 and B2 could produce biosurfactants with hexadecane as the sole carbon source,but their modes of action were different.The carbon source was found to affect the cell surface hydrophobicity.Cell surface hydrophobicity was poor with glucose as the carbon source,but enhanced when hexadecane was used as the carbon source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号