Journal of Radioanalytical and Nuclear Chemistry - The kinetics of Co ions sorption on CoTreat® was investigated in the 5–40 mg/L concentration range at a bulk temperature of... 相似文献
In this study, paclitaxel loaded poly( L-lactic acid) (PTX-PLLA) microparticles were prepared using solution enhanced dispersion by supercritical CO2(SEDS) technique. This supercritical antisolvent technique offers the advantage of negligible organic solvent residua in the drug loaded microparticles. Scanning electron microscopy (SEM) showed that microparticles exhibited rather spherical shape and small particle size with narrow particle size distribution. X-ray diffraction (XRD) and differential scanning calorimeter (DSC) indicated that PTX was amorphously dispersed in the PLLA matrix. The drug loading and encapsulation efficiency of PTX-PLLA microparticles were 14.33% and 62.68%, respectively. In vitro cytotoxicity evaluation of PTX-PLLA microparticles against nonsmall-cell lung cancer A549 and ovarian cancer SKOV3 cell lines indicated that PTX-PLLA had superior antiproliferation activity against the A549 and SKOV3 cell lines, compared with free PTX formulations. The cellular internalization of fluorescent microparticles was evidenced by fluorescence microscope and further confirmed by transmission electron microscopy (TEM). This was attributed to the efficient intracellular accumulation of PTX via cell phagocytosis and sustained release of PTX from PLLA matrix. The anticancer activity of PTX-PLLA was associated with PTX-induced cell apoptosis such as nuclear aberrations, condensation of chromatin and swelling damage in mitochondria. The cell apoptosis index detected by flow cytometry was higher in PTX-PLLA group than in free PTX. The PTX-PLLA formulation, which was obtained through micronization of PTX and encapsulation of micronized PTX into PLLA simultaneously in the SEDS process, significantly potentiated the anticancer activity of PTX. 相似文献
Novel amine-terminated silicon (Si) quantum dots (QDs) were synthesized and applied for the detection of human serum proteins on gels directly after polyacrylamide gel electrophoresis (PAGE). The diameter of these stable amine-terminated Si?QDs was in the range of 0.5-2.0 nm. In this study, the fluorescent imaging conditions, such as the buffer solution, pH value, buffer concentration and quantity of Si?QDs, were optimized and the possible mechanisms of Si?QDs-protein interaction were analyzed. The mode of Si?QDs and human serum albumin association was found to occur by hydrogen bond interactions; this was probably attributed to the interaction between the amino group of amine-terminated Si?QDs and the carboxyl group of proteins. Meanwhile, human serum proteins separated by native 1D and native 2D electrophoresis were detected by Si QD-based fluorescent imaging. Some proteins, such as isoform 1 of α-1-antitrypsin, complement C3 (Fragment) and hemopexin, which were identified by mass spectrometry (MS), were easily detected by using Si?QDs, but not with CBB-R250 staining. The Si?QDs-based fluorescent imaging technique with high resolution is a sensitive and dependable method for direct detection of human serum proteins, and has enormous potential in clinical diagnosis. 相似文献
A simple protocol for rapid quantitation of acylcarnitines in serum and whole blood has been developed using paper spray mass spectrometry. Dried serum and whole blood containing a mixture of ten acylcarnitines at various concentrations were analyzed as spots from paper directly without any sample pretreatment, separation, or derivatization. The composition of the spray solvent was found to be a critical factor: for serum samples, spray solvent of methanol/water/formic acid (80:20:0.1) gave the best signal intensity while for blood samples which contain more matrix components, acetonitrile/water (90:10) was a much more suitable spray solvent. For the paper type and size used, 0.5 μL of sample provided an optimal signal for both serum and whole blood samples. For quantitative profiling, the limits of quantitation obtained from both serum and blood were much lower than the clinically validated cutoff values for diagnosis of fatty acid oxidation disorders in newborn screening. Linearity (R(2) > 0.95) and reproducibility (RSD ~10 %) were achieved in the concentration ranges from 100 nM to 5 μM for the C2 acylcarnitine, and for other acylcarnitines, these values were from 10 to 500 nM. Acylcarnitine profiles offer an effective demonstration of the fact that paper spray mass spectrometry is an appropriate, simple, rapid method with high sensitivity and high reproducibility applicable to newborn screening tests. 相似文献
Components of co-continuous phase can form an interpenetrating network structure, which has great potential to synergistically improve the mechanical properties of the blends, and to impart the functional blends superior electrical conductivity and permeability. In this work, the effects of shear rates (50–5000 s?1) at different temperatures on the phase morphology, phase size and lamellar crystallites of biodegradable co-continuous polybutylene terephthalate (PBAT)/polybutylene succinate (PBS) blend are quantitatively investigated. The results show that the above features of the PBAT/PBS have a strong dependence on the shear flow and thermal field. The co-continuous phase of the blend is well maintained at 130 °C. Interestingly, this phase structure transforms into a “sea-island” structure at 160 °C, which gradually recovers to a co-continuous phase when the shear rate increases from 1000 s?1 to 5000 s?1. The phase size decreases with the increase of shear rate both at 130 °C and 160 °C due to the refinement and deformation of phase structures caused by strong shear stress. Unexpectedly, a unique phenomenon is observed that the shear-induced lamellar crystallites are oriented perpendicular to shear direction in the range of 500–5000 s?1 at 130 °C, while the orientation of lamellar crystallites at 160 °C is along the shear direction within the whole range of shear rates. The degree of orientation for the PBAT/PBS blend crystals increases first and then decreases at both temperatures above. In addition, the range of shear rate has reached the level in the industrial processing. Therefore, this work has important guiding significance for the regulation of the co-continuous phase structure and the performance for the blend in the practical processing.