首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   31篇
  国内免费   2篇
化学   661篇
晶体学   5篇
力学   3篇
数学   3篇
物理学   84篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   9篇
  2018年   3篇
  2017年   5篇
  2016年   19篇
  2015年   20篇
  2014年   11篇
  2013年   35篇
  2012年   60篇
  2011年   75篇
  2010年   29篇
  2009年   19篇
  2008年   63篇
  2007年   42篇
  2006年   48篇
  2005年   36篇
  2004年   39篇
  2003年   44篇
  2002年   37篇
  2001年   3篇
  2000年   14篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1992年   12篇
  1991年   7篇
  1990年   5篇
  1989年   3篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   6篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   6篇
  1979年   12篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   5篇
  1971年   4篇
  1967年   1篇
排序方式: 共有756条查询结果,搜索用时 0 毫秒
41.
Addition of potassium superoxide with 18-crown-6 ether (KO(2)(?-)-18-crown-6) to a toluene solution of an acridinium ion-linked porphyrin triad (Acr(+)-H(2)P-Acr(+)) resulted in a remarkable enhancement of the fluorescence intensity. Thus, Acr(+)-H(2)P-Acr(+) acts as an efficient fluorescence sensor for superoxide. Electron transfer from KO(2)(?-)-18-crown-6 to the Acr(+) moiety to produce the two-electron-reduced species (Acr(?)-H(2)P-Acr(?)) results in inhibition of the fluorescence quenching via photoinduced electron transfer, as revealed by laser flash photolysis measurements.  相似文献   
42.
The new cupric superoxo complex [LCu(II)(O(2)(?-))](+), which possesses particularly strong O-O and Cu-O bonding, is capable of intermolecular C-H activation of the NADH analogue 1-benzyl-1,4-dihydronicotinamide (BNAH). Kinetic studies indicated a first-order dependence on both the Cu complex and BNAH with a deuterium kinetic isotope effect (KIE) of 12.1, similar to that observed for certain copper monooxygenases.  相似文献   
43.
The microbial transformation of four Cinchona alkaloids (quinine, quinidine, cinchonidine, and cinchonine) by endophytic fungi isolated from Cinchona pubescens was investigated. The endophytic filamentous fungus Xylaria sp. was found to transform the Cinchona alkaloids into their 1-N-oxide derivatives.  相似文献   
44.
The microbial transformation of (+)-catechin (1) and (-)-epicatechin (2) by endophytic fungi isolated from a tea plant was investigated. It was found that the endophytic filamentous fungus Diaporthe sp. transformed them (1, 2) into the 3,4-cis-dihydroxyflavan derivatives, (+)-(2R,3S,4S)-3,4,5,7,3',4'-hexahydroxyflavan (3) and (-)-(2R,3R,4R)-3,4,5,7,3',4'-hexahydroxyflavan (7), respectively, whereas (-)-catechin (ent-1) and (+)-epicatechin (ent-2) with a 2S-phenyl group resisted the biooxidation.  相似文献   
45.
A tetrathiafulvalene (TTF) donor is annulated to porphyrins (P) via quinoxaline linkers to form novel symmetric P–TTF–P triads 1 a – c and asymmetric P–TTF dyads 2 a , b in good yields. These planar and extended π‐conjugated molecules absorb light over a wide region of the UV/Vis spectrum as a result of additional charge‐transfer excitations within the donor–acceptor assemblies. Quantum‐chemical calculations elucidate the nature of the electronically excited states. The compounds are electrochemically amphoteric and primarily exhibit low oxidation potentials. Cyclic voltammetric and spectroelectrochemical studies allow differentiation between the TTF and porphyrin sites with respect to the multiple redox processes occurring within these molecular assemblies. Transient absorption measurements give insight into the excited‐state events and deliver corresponding kinetic data. Femtosecond transient absorption spectra in benzonitrile may suggest the occurrence of fast charge separation from TTF to porphyrin in dyads 2 a , b but not in triads 1 a – c . Clear evidence for a photoinduced and relatively long lived charge‐separated state (385 ps lifetime) is obtained for a supramolecular coordination compound built from the ZnP–TTF dyad and a pyridine‐functionalized C60 acceptor unit. This specific excited state results in a (ZnP–TTF)?+ ??? (C60py)?? state. The binding constant of ZnII ??? py is evaluated by constructing a Benesi–Hildebrand plot based on fluorescence data. This plot yields a binding constant K of 7.20×104 M ?1, which is remarkably high for bonding of pyridine to ZnP.  相似文献   
46.
Inclusion complexes of benzo‐ and dithiabenzo‐crown ether functionalized monopyrrolotetrathiafulvalene (MPTTF) molecules were formed with Li+@C60 ( 1? Li+@C60 and 2? Li+@C60). The strong complexation has been quantified by high binding constants that exceed 106 M ?1 obtained by UV/Vis titrations in benzonitrile (PhCN) at room temperature. On the basis of DFT studies at the B3LYP/6‐311G(d,p) level, the orbital interactions between the crown ether moieties and the π surface of the fullerene together with the endohedral Li+ have a crucial role in robust complex formation. Interestingly, complexation of Li+@C60 with crown ethers accelerates the intersystem crossing upon photoexcitation of the complex, thereby yielding 3(Li+@C60)*, when no charge separation by means of 1Li+@C60* occurs. Photoinduced charge separation by means of 3Li+@C60* with lifetimes of 135 and 120 μs for 1? Li+@C60 and 2? Li+@C60, respectively, and quantum yields of 0.82 in PhCN have been observed by utilizing time‐resolved transient absorption spectroscopy and then confirmed by electron paramagnetic resonance measurements at 4 K. The difference in crown ether structures affects the binding constant and the rates of photoinduced electron‐transfer events in the corresponding complex.  相似文献   
47.
Spectroscopic, redox, computational, and electron transfer reactions of the covalently linked zinc porphyrin–triphenylamine–fulleropyrrolidine system are investigated in solvents of varying polarity. An appreciable interaction between triphenylamine and the porphyrin π system is revealed by steady‐state absorption and emission, redox, and computational studies. Free‐energy calculations suggest that the light‐induced processes via the singlet‐excited porphyrin are exothermic in benzonitrile, dichlorobenzene, toluene, and benzene. The occurrence of fast and efficient charge‐separation processes (≈1012 s?1) via the singlet‐excited porphyrin is confirmed by femtosecond transient absorption measurements in solvents with dielectric constants ranging from 25.2 (benzonitrile) to 2.2 (benzene). The rates of the charge separation processes are much less solvent‐dependent, which suggests that the charge‐separation processes occur at the top region of the Marcus parabola. The lifetimes of the singlet radical‐ion pair (70–3000 ps at room temperature) decrease substantially in more polar solvents, which suggests that the charge‐recombination process is occurring in the Marcus inverted region. Interestingly, by utilizing the nanosecond transient absorption spectral technique we can obtain clear evidence about the existence of triplet radical‐ion pairs with relatively long lifetimes of 0.71 μs (in benzonitrile) and 2.2 μs (in o‐dichlorobenzene), but not in toluene and benzene due to energetic considerations. From the point of view of mechanistic information, the synthesized zinc porphyrin–triphenylamine–fulleropyrrolidine system has the advantage that both the lifetimes of the singlet and triplet radical‐ion pair can be determined.  相似文献   
48.
Formation process of gold nanoparticles was investigated by near-field heterodyne transient grating method. In the absence of the protective agents, although the diffusion of H[AuICl2] could be observed after the photo-reduction of H[AuIIICl4], the diffusion of nanoparticle-seeds was not observed. On the other hand, in the presence of the protective agents, the diffusion of a complex molecule (Au and protective agent) and nanoparticle-seeds could be observed. From these results, it was found that enough amount of the complex is essential for the nanoparticle formation. We also investigated the formation process with four different chemicals as a protective agent. The hydrodynamic radius of nanoparticle-seeds generated in the poly(vinyl pyrrolidone) and TritonX-100 solutions were larger than those generated in the Tween 20 and Brij 58 solutions. The former two have hydrophilic chain in the molecular structure; on the other hand, the latter two have hydrophobic alkyl chain. Based on those facts, we concluded that the interaction between the chains of the complex molecule plays an important role in the nanoparticle formation process.  相似文献   
49.
Efficient photocatalytic oxygenation of toluene occurs under visible light irradiation of 9-mesityl-10-methylacridinium (Acr+–Mes) in oxygen-saturated acetonitrile containing toluene and aqueous hydrochloric acid with a xenon lamp for 15 h. The oxygenated products, benzoic acid (70 %) and benzaldehyde (30 %), were formed after the photoirradiation. The photocatalytic reaction is initiated by intramolecular photoinduced electron transfer from the mesitylene moiety to the singlet excited state of the Acr+ moiety of Acr+–Mes, which affords the electron-transfer state, Acr?–Mes?+. The Mes?+ moiety can oxidize chloride ion (Cl?) by electron transfer to produce chlorine radical (Cl?), whereas the Acr? moiety can reduce O2 to O 2 ?? . The Cl? radical produced abstracts a hydrogen from toluene to afford benzyl radical in competition with the bimolecular radical coupling of Cl?. The benzyl radical reacts with O2 rapidly to afford the peroxyl radical, leading to the oxygenated product, benzaldehyde. Benzaldehyde is readily further photooxygenated to yield benzoic acid with Acr?–Mes?+. In the case of an aromatic compound with electron-donating substituents, 1,3,5-trimethoxybenzene, photocatalytic chlorination occurred efficiently under the same photoirradiation conditions to yield a monochloro-substituted compound, 2,4,6-trimethoxychlorobenzene.  相似文献   
50.
An efficient functional mimic of the photosynthetic antenna‐reaction center has been designed and synthesized. The model contains a near‐infrared‐absorbing aza‐boron‐dipyrromethene (ADP) that is connected to a monostyryl boron‐dipyrromethene (BDP) by a click reaction and to a fullerene (C60) using the Prato reaction. The intramolecular photoinduced energy and electron‐transfer processes of this triad as well as the corresponding dyads BDP‐ADP and ADP‐C60 have been studied with steady‐state and time‐resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge‐separated states. Such calculations show that electron transfer from the singlet excited ADP (1ADP*) to C60 yielding ADP.+‐C60.? is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from 1BDP* to ADP in the dyad BDP‐ADP and electron transfer from 1ADP* to C60 in the dyad ADP‐C60. Sequential energy and electron transfer have also been clearly observed in the triad BDP‐ADP‐C60. By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈1011 s?1). The dynamics of electron transfer through 1ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge‐separation process from 1ADP* to C60 has been detected, which gives the relatively long‐lived BDP‐ADP.+C60.? with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge‐separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP‐ADP and ADP‐C60, and the triad BDP‐ADP‐C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号