首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   31篇
  国内免费   5篇
化学   543篇
晶体学   7篇
力学   2篇
数学   16篇
物理学   48篇
  2022年   4篇
  2021年   3篇
  2020年   6篇
  2019年   8篇
  2018年   3篇
  2017年   5篇
  2016年   18篇
  2015年   19篇
  2014年   12篇
  2013年   29篇
  2012年   52篇
  2011年   67篇
  2010年   26篇
  2009年   17篇
  2008年   60篇
  2007年   34篇
  2006年   43篇
  2005年   35篇
  2004年   44篇
  2003年   41篇
  2002年   26篇
  2001年   1篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   6篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   5篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1938年   2篇
排序方式: 共有616条查询结果,搜索用时 0 毫秒
61.
A molecular dyad and triad, comprised of a known photosensitizer, BF(2)-chelated dipyrromethane (BDP), covalently linked to its structural analog and near-IR emitting sensitizer, BF(2)-chelated tetraarylazadipyrromethane (ADP), have been newly synthesized and the photoinduced energy and electron transfer were examined by femtosecond and nanosecond laser flash photolysis. The structural integrity of the newly synthesized compounds has been established by spectroscopic, electrochemical, and computational methods. The DFT calculations revealed a molecular-clip-type structure for the triad, in which the BDP and ADP entities are separated by about 14 ? with a dihedral angle between the fluorophores of around 70°. Differential pulse voltammetry studies have revealed the redox states, allowing estimation of the energies of the charge-separated states. Such calculations revealed a charge separation from the singlet excited BDP ((1)BDP*) to ADP (BDP(.+)-ADP(.-)) to be energetically favorable in nonpolar toluene and in polar benzonitrile. In addition, the excitation transfer from the singlet BDP to ADP is also envisioned due to good spectral overlap of the BDP emission and ADP absorption spectra. Femtosecond laser flash photolysis studies provided concrete evidence for the occurrence of energy transfer from (1)BDP* to ADP (in benzonitrile and toluene) and electron transfer from BDP to (1)ADP* (in benzonitrile, but not in toluene). The kinetic study of energy transfer was measured by monitoring the rise of the ADP emission and revealed fast energy transfer (ca. 10(11) s(-1)) in these molecular systems. The kinetics of electron transfer via (1)ADP*, measured by monitoring the decay of the singlet ADP at λ=820 nm, revealed a relatively fast charge-separation process from BDP to (1)ADP*. These findings suggest the potential of the examined ADP-BDP molecules to be efficient photosynthetic antenna and reaction center models.  相似文献   
62.
A tetrathiafulvalene (TTF) donor is annulated to porphyrins (P) via quinoxaline linkers to form novel symmetric P–TTF–P triads 1 a – c and asymmetric P–TTF dyads 2 a , b in good yields. These planar and extended π‐conjugated molecules absorb light over a wide region of the UV/Vis spectrum as a result of additional charge‐transfer excitations within the donor–acceptor assemblies. Quantum‐chemical calculations elucidate the nature of the electronically excited states. The compounds are electrochemically amphoteric and primarily exhibit low oxidation potentials. Cyclic voltammetric and spectroelectrochemical studies allow differentiation between the TTF and porphyrin sites with respect to the multiple redox processes occurring within these molecular assemblies. Transient absorption measurements give insight into the excited‐state events and deliver corresponding kinetic data. Femtosecond transient absorption spectra in benzonitrile may suggest the occurrence of fast charge separation from TTF to porphyrin in dyads 2 a , b but not in triads 1 a – c . Clear evidence for a photoinduced and relatively long lived charge‐separated state (385 ps lifetime) is obtained for a supramolecular coordination compound built from the ZnP–TTF dyad and a pyridine‐functionalized C60 acceptor unit. This specific excited state results in a (ZnP–TTF)?+ ??? (C60py)?? state. The binding constant of ZnII ??? py is evaluated by constructing a Benesi–Hildebrand plot based on fluorescence data. This plot yields a binding constant K of 7.20×104 M ?1, which is remarkably high for bonding of pyridine to ZnP.  相似文献   
63.
A ferrocene-quinone dyad (Fc-Q) with a rigid amide spacer and Fc-(Me)Q dyad, in which the amide proton acting as a hydrogen-bonding acceptor is replaced by the methyl group, are employed to examine the effects of hydrogen bonding on both the thermal and the photoinduced electron-transfer reactions. The hydrogen bonding of the semiquinone radical anion with the amide proton in Fc-Q(.-) produced by the electron-transfer reduction of Fc-Q is indicated by the significant positive shift of the one-electron reduction potential of Fc-Q. The hyperfine coupling constants of Fc-Q(.-) also indicate the existence of hydrogen bonding, agreeing with those predicted by the density functional calculation. The hydrogen-bonding dynamics in the photoinduced electron transfer from the ferrocene (Fc) to the quinone moiety (Q) in Fc-Q have been successfully detected in the femtosecond laser flash photolysis experiments. Thermal intramolecular electron transfer from Fc to Q in Fc-Q and Fc-(Me)Q also occurs efficiently in the presence of metal ions in acetonitrile at 298 K. The hydrogen bond formed between the semiquinone radical anion and the amide proton in Fc-Q results in remarkable acceleration of the rate of metal ion-promoted electron transfer as compared to the rate of Fc-(Me)Q in which hydrogen bonding is prohibited. The metal ion-promoted electron-transfer rates are well correlated with the binding energies of superoxide ion-metal ion complexes, which are derived from the g(zz) values of the ESR spectra.  相似文献   
64.
Donor–bridge–acceptor triad (Por‐2TV‐C60) and tetrad molecules ((Por)2‐2TV‐C60), which incorporated C60 and one or two porphyrin molecules that were covalently linked through a phenylethynyl‐oligothienylenevinylene bridge, were synthesized. Their photodynamics were investigated by fluorescence measurements, and by femto‐ and nanosecond laser flash photolysis. First, photoinduced energy transfer from the porphyrin to the C60 moiety occurred rather than electron transfer, followed by electron transfer from the oligothienylenevinylene to the singlet excited state of the C60 moiety to produce the radical cation of oligothienylenevinylene and the radical anion of C60. Then, back‐electron transfer occurred to afford the triplet excited state of the oligothienylenevinylene moiety rather than the ground state. Thus, the porphyrin units in (Por)‐2TV‐C60 and (Por)2‐2TV‐C60 acted as efficient photosensitizers for the charge separation between oligothienylenevinylene and C60.  相似文献   
65.
66.
Electron-transfer reduction of molecular oxygen (O2) by the phenolate anion (1-) of a vitamin E model, 2,2,5,7,8-pentamethylchroman-6-ol (1H), occurred to produce superoxide anion, which could be directly detected by a low-temperature EPR measurement. The rate of electron transfer from 1- to O2 was relatively slow, since this process is energetically unfavourable. The one-electron oxidation potential of 1- determined by cyclic voltammetric measurements is sufficiently negative to reduce 2,2-bis(4-tert-octylphenyl)-1-picrylhydrazyl radical (DOPPH*) to the corresponding one-electron reduced anion, DOPPH-, suggesting that 1- can also act as an efficient radical scavenger.  相似文献   
67.
Ferroelasticity has been reported for several types of molecular crystals, which show mechanical‐stress‐induced shape change under twinning and/or spontaneous formation of strain. Aiming to create materials that exhibit both ferroelasticity and light‐emission characteristics, we discovered the first examples of ferroelastic luminescent organometallic crystals. Crystals of arylgold(I)(N‐heterocyclic carbene)(NHC) complexes bend upon exposure to anisotropic mechanical stress. X‐ray diffraction analyses and stress‐strain measurements on these ferroelastic crystals confirmed typical ferroelastic behavior, mechanical twinning, and the spontaneous build‐up of strain. A comparison with single‐crystal structures of related gold‐NHC complexes that do not show ferroelasticity shed light on the structural origins of the ferroelastic behavior.  相似文献   
68.
A star-shaped Ru/Os tetranuclear complex, in which a central Os unit is linked to three peripheral Ru units by 4,4'-azobis(2,2'-bipyridine) (azobpy) bridging ligands, was prepared to examine the unique photodynamics regulated by its redox state. The Ru/Os tetranuclear complex exhibits Ru-based luminescence at 77 K, whereas the three-electron reduction (one for each azobpy) of the Ru/Os complex results in luminescence from the Os unit. The photoexcited state of the Ru/Os complex rapidly decays into low energy metal-to-ligand charge-transfer states, in which the excited electron is localized in the azobpy ligand in the form of azobpy(.-). Upon the one-electron reduction of the azobpy ligands, the above-mentioned low-energy states become unavailable to the photoexcited complex. As a result, an energy transfer from the Ru-based excited state to the Os-based excited state becomes possible. Ultrafast transient absorption measurements revealed that the energy transfer process consists of two steps; intramolecular electron transfer from the terminal bipyridine ligand (bpy(.-)) to form azobpy(2-) followed by a metal-to-metal electron transfer. Thus, the Ru/Os tetranuclear complex collects light energy into the central Os unit depending on the redox state of the bridging ligands, qualifying as a switchable antenna.  相似文献   
69.
Mechanically induced C−C bond formation was demonstrated by the laser driven shock wave generated in liquid normal alkanes at room temperature. Gas chromatography mass spectrometry analysis revealed the dehydrogenation condensation between two alkane molecules, for seven normal alkanes from pentane to undecane. Major products were identified to be linear and branched alkane molecules with double the number of carbons, and exactly coincided with the molecules predicted by supposing that a C−C bond was formed between two starting molecules. The production of the alkane molecules showed that the C−C bond formation occurred almost evenly at all the carbon positions. The dependence of the production on the laser pulse energy clearly indicated that the process was attributed to the shock wave. The C−C bond formation observed was not a conventional passive chemical reaction but an unprecedented active reaction.  相似文献   
70.
Photoirradiation of various 10-methylacridinium ions (AcrR+, R = H, iPr, and Ph) intercalated in DNA results in ultrafast intramolecular electron transfer, followed by rapid back electron transfer between AcrR+ and nucleotides in DNA. The electron-transfer dynamics in DNA were monitored by femtosecond time-resolved transient absorption spectroscopy. Both acridinyl radical and nucleotide radical cations, formed in the photoinduced electron transfer in DNA, were successfully detected in an aqueous solution. These transient absorption spectra were assigned by the comparison with those of DNA nucleotide radical cations, which were obtained by the intermolecular electron-transfer oxidation of nucleotides with the electron-transfer state of 9-mesityl-10-methylacridinium ion (Acr–Mes+) produced upon photoexcitation of Acr+–Mes. Photoinduced cleavage of DNA with various acridinium ions (AcrR+, R = H, iPr, Ph, and Mes) has also been examined by agarose gel electrophoresis, which indicates that the rapid intramolecular back electron transfer between acridinyl radical and nucleotide radical cation in DNA suppresses the DNA cleavage as compared with the intermolecular electron-transfer oxidation of nucleotides with Acr–Mes+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号