首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   1篇
化学   52篇
数学   9篇
物理学   2篇
  2019年   1篇
  2016年   1篇
  2013年   2篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1982年   3篇
  1976年   1篇
  1975年   1篇
  1930年   2篇
  1928年   1篇
  1923年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
61.
We develop an "end-transfer configurational bias Monte Carlo" method for efficient thermodynamic sampling of complex biopolymers and assess its performance on a mesoscale model of chromatin (oligonucleosome) at different salt conditions compared to other Monte Carlo moves. Our method extends traditional configurational bias by deleting a repeating motif (monomer) from one end of the biopolymer and regrowing it at the opposite end using the standard Rosenbluth scheme. The method's sampling efficiency compared to local moves, pivot rotations, and standard configurational bias is assessed by parameters relating to translational, rotational, and internal degrees of freedom of the oligonucleosome. Our results show that the end-transfer method is superior in sampling every degree of freedom of the oligonucleosomes over other methods at high salt concentrations (weak electrostatics) but worse than the pivot rotations in terms of sampling internal and rotational sampling at low-to-moderate salt concentrations (strong electrostatics). Under all conditions investigated, however, the end-transfer method is several orders of magnitude more efficient than the standard configurational bias approach. This is because the characteristic sampling time of the innermost oligonucleosome motif scales quadratically with the length of the oligonucleosomes for the end-transfer method while it scales exponentially for the traditional configurational-bias method. Thus, the method we propose can significantly improve performance for global biomolecular applications, especially in condensed systems with weak nonbonded interactions and may be combined with local enhancements to improve local sampling.  相似文献   
62.
63.
We describe methods for determining the local environment of cations and the process of ionic clustering in ionomers, using electron magnetic resonance spectroscopy. The distance between Cu2+ cations in perfluorinated membranes (Nafion) containing terminal sulfonic groups and swollen by water has been deduced from an analysis of ESR spectra at L (1.25 GHz), S (2.36 GHz) and X (9.36 GHz) bands, in membranes containing cupric ion concentrations in the range 1–30 percent of the total amount needed to fully neutralize the pendant acid groups. At higher cation concentrations ESR spectra indicate the presence of aggregated cations. The intercation distance determination is based on the simulation of spectra from isolated cations using distribution widths δg11 and δA11 and extraction of the residual width ΔHR, which is due to dipolar interactions. No aggregation is detected in membranes swollen by less polar solvents such as methanol, dimethylformamide (DMF) and tetrahydrofuran (THF); these results are in contrast to SAXS experiments in membranes swollen by methanol, which exhibit the “ionic peak”. Cu2+-Cu2+ and Ti3+-Ti3+ dimers have been detected in Nafion swollen by water, methanol, DMF and THF, and have been characterized by an analysis of the spin-forbidden half-field Δms=2 transition, and by computer simulations. The intercation distance in the cupric dimers, deduced from the intensity ratio of the Δms=2 and Δms=1 dimer transitions, is 5.0±0.2 Å. A model for the dimer has been proposed, which explains the crosslinking of the polymer chains by the metal cations. ENDOR signals from 1H, 2H and 19F nuclei have been detected in Nafion neutralized by Ti3+. The ENDOR results allow determination of the local environment of the paramagnetic cations, to a distance of ∼10 Å.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号