首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15761篇
  免费   2892篇
  国内免费   2118篇
化学   11687篇
晶体学   209篇
力学   969篇
综合类   133篇
数学   1642篇
物理学   6131篇
  2024年   50篇
  2023年   344篇
  2022年   608篇
  2021年   624篇
  2020年   747篇
  2019年   765篇
  2018年   635篇
  2017年   611篇
  2016年   831篇
  2015年   865篇
  2014年   976篇
  2013年   1223篇
  2012年   1513篇
  2011年   1493篇
  2010年   1000篇
  2009年   1079篇
  2008年   1136篇
  2007年   951篇
  2006年   895篇
  2005年   744篇
  2004年   551篇
  2003年   406篇
  2002年   373篇
  2001年   318篇
  2000年   254篇
  1999年   260篇
  1998年   205篇
  1997年   208篇
  1996年   164篇
  1995年   156篇
  1994年   118篇
  1993年   121篇
  1992年   105篇
  1991年   86篇
  1990年   66篇
  1989年   46篇
  1988年   45篇
  1987年   36篇
  1986年   30篇
  1985年   31篇
  1984年   19篇
  1983年   20篇
  1982年   6篇
  1981年   10篇
  1980年   6篇
  1979年   8篇
  1977年   4篇
  1975年   5篇
  1965年   4篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
871.
Herein, we propose the construction of a sandwich‐structured host filled with continuous 2D catalysis–conduction interfaces. This MoN‐C‐MoN trilayer architecture causes the strong conformal adsorption of S/Li2Sx and its high‐efficiency conversion on the two‐sided nitride polar surfaces, which are supplied with high‐flux electron transfer from the buried carbon interlayer. The 3D self‐assembly of these 2D sandwich structures further reinforces the interconnection of conductive and catalytic networks. The maximized exposure of adsorptive/catalytic planes endows the MoN‐C@S electrode with excellent cycling stability and high rate performance even under high S loading and low host surface area. The high conductivity of this trilayer texture does not compromise the capacity retention after the S content is increased. Such a job‐synergistic mode between catalytic and conductive functions guarantees the homogeneous deposition of S/Li2Sx, and avoids thick and devitalized accumulation (electrode passivation) even after high‐rate and long‐term cycling.  相似文献   
872.
The dielectric properties between in-particle/water interface and bulk solution are significantly different, which are ignored in the theories of surface potential estimation. The analytical expressions of surface potential considering the dielectric saturation were derived in mixed electrolytes based on the nonlinear Poisson-Boltzmann equation. The surface potentials calculated from the approximate analytical and exact numerical solutions agreed with each other for a wide range of surface charge densities and ion concentrations. The effects of dielectric saturation became important for surface charge densities larger than 0.30 C/m\begin{document}$ ^2 $\end{document}. The analytical models of surface potential in different mixed electrolytes were valid based on original Poisson-Boltzmann equation for surface charge densities smaller than 0.30 C/m\begin{document}$ ^2 $\end{document}. The analytical model of surface potential considering the dielectric saturation for low surface charge density can return to the result of classical Poisson-Boltzmann theory. The obtained surface potential in this study can correctly predict the adsorption selectivity between monovalent and bivalent counterions.  相似文献   
873.
Cancer possesses normoxic and hypoxia microenvironments with different levels of oxygen, needing different efficacies of photothermal and photodynamic therapies. It is important to precisely tune the photothermal and photodynamic effects of phototherapy nano‐agents for efficient cancer treatment. Now, a series of copolymeric nanoparticles (PPy‐Te NPs) were synthesized in situ by controlled oxidative copolymerization with different ratios of pyrrole to tellurophene by FeCl3. The photothermal and photodynamic effects of semiconducting nano‐agents under the first near‐infrared (NIR) irradiation were precisely and systematically tuned upon simply varying the molar ratio of the pyrrole to tellurophene. The PPy‐Te NPs were used for cancer treatment in mice, exhibiting excellent biocompatibility and therapeutic effect. This work presents a simple method to tune photothermal and photodynamic therapies effect in semiconducting nano‐agents for cancer treatment.  相似文献   
874.
Using a one‐step synthetic route for block copolymers avoids the repeated addition of monomers to the polymerization mixture, which can easily lead to contamination and, therefore, to the unwanted termination of chain growth. For this purpose, monomers ( M1 – M5 ) with different steric hindrances and different propagation rates are explored. Copolymerization of M1 (propagating rapidly) with M2 (propagating slowly), M1 with M3 (propagating extremely slowly) and M4 (propagating rapidly) with M5 (propagating slowly) yielded diblock‐like copolymers using Grubbs’ first ( G1 ) or third generation catalyst ( G3 ). The monomer consumption was followed by 1H NMR spectroscopy, which revealed vastly different reactivity ratios for M1 and M2 . In the case of M1 and M3 , we observed the highest difference in reactivity ratios (r1=324 and r2=0.003) ever reported for a copolymerization method. A triblock‐like copolymer was also synthesized using G3 by first allowing the consumption of the mixture of M1 and M2 and then adding M1 again. In addition, in order to measure the fast reaction rates of the G3 catalyst with M1 , we report a novel retardation technique based on an unusual reversible G3 Fischer‐carbene to G3 benzylidene/alkylidene transformation.  相似文献   
875.
Potassium (K) cations are spontaneously formed upon thermal deposition of low‐coverage K onto an ultrathin CuO monolayer grown on Cu(110) and they were explored by low‐temperature scanning tunneling microscopy (STM) and X‐ray photoemission spectroscopy. The formed K cations are highly immobile and thermally stable. The local work function around an individual K cation decreases by 1.5±0.3 eV, and a charging zone underneath it is established within about 1.0 nm. The cationic and neutral states of the K atom are switchable upon application of an STM bias voltage pulse, which is simultaneously accompanied by an adsorption site relocation.  相似文献   
876.
Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C?H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes and C(sp3)?H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3)?H donor is converted to a nucleophilic carbon radical through H‐atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl?. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.  相似文献   
877.
Microfluidic chip electrophoresis has been widely employed for separation of various biochemical species owing to its advantages of low sample consumption, low cost, fast analysis, high throughput, and integration capability. In this article, we reviewed the development of four different modes of microfluidics‐based electrophoresis technologies including capillary electrophoresis, gel electrophoresis, dielectrophoresis, and field (electric) flow fractionation. Coupling detection schemes on microfluidic electrophoresis platform were also reviewed such as optical, electrochemical, and mass spectrometry method. We further discussed the innovative applications of microfluidic electrophoresis for biomacromolecules (nucleic acids and proteins), biochemical small molecules (amino acids, metabolites, ions, etc.), and bioparticles (cells and pathogens) analysis. The future direction of microfluidic chip electrophoresis was predicted.  相似文献   
878.
Du  Min  Zhang  Feng  Zhang  Xiaofei  Dong  Wentao  Sang  Yuanhua  Wang  Jianjun  Liu  Hong  Wang  Shuhua 《中国科学:化学(英文版)》2020,63(12):1767-1776
Science China Chemistry - Rechargeable aqueous zinc ion batteries (ZIBs), with the easy operation, cost effectiveness, and high safety, are emerging candidates for high-energy wearable/portable...  相似文献   
879.
Wang  Xianheng  Yang  Lei  Yang  Peng  Guo  Wancai  Zhang  Quan-Ping  Liu  Xianhu  Li  Yiwen 《中国科学:化学(英文版)》2020,63(9):1295-1305
Melanin-inspired polymers are currently the focus of growing interest for a wide range of applications ranging from energy to biomedical area. Whilst researchers have made numerous attempts to prepare and utilize polydopamine nanoparticles(PDA NPs), they have made limited progress in developing and discovering another typical functional mimic of natural melanin, poly(levodopa)(P(L-DOPA)) NPs, probably due to the lack of facile synthetic strategies towards satisfactory structural and functional control of melanin-like NPs. Herein, we reported a one-pot preparation method towards P(L-DOPA) NPs with good yields and controllable size/property in an aqueous solution assisted by various metal ions(i.e., Ni(II), Mg(II), Ca(II), Fe(III), Mn(II), Co(II), Zn(II) and Cd(II)). Interestingly, the resulting P(L-DOPA) NPs exhibited enhanced light absorption and photothermal behaviors compared with well-established PDA NPs, which can be employed to further fabricate kinds of photothermal composite actuators with promising performances such as folding, switching, and forward-moving. This study offers a facile and robust way to synthesize new synthetic melanins beyond PDA, and facilitates further functional discovery and evolution of melanin-inspired polymers and composites.  相似文献   
880.
Yuan  Jun  Zhang  Chujun  Chen  Honggang  Zhu  Can  Cheung  Sin Hang  Qiu  Beibei  Cai  Fangfang  Wei  Qingya  Liu  Wei  Yin  Hang  Zhang  Rui  Zhang  Jidong  Liu  Ye  Zhang  Huotian  Liu  Weifang  Peng  Hongjian  Yang  Junliang  Meng  Lei  Gao  Feng  So  Shukong  Li  Yongfang  Zou  Yingping 《中国科学:化学(英文版)》2020,63(8):1159-1168
Recent advances in material design for organic solar cells(OSCs) are primarily focused on developing near-infrared nonfullerene acceptors, typically A-DA′D-A type acceptors(where A abbreviates an electron-withdrawing moiety and D, an electron-donor moiety), to achieve high external quantum efficiency while maintaining low voltage loss. However, the charge transport is still constrained by unfavorable molecular conformations, resulting in high energetic disorder and limiting the device performance. Here, a facile design strategy is reported by introducing the "wing"(alkyl chains) at the terminal of the DA′D central core of the A-DA′D-A type acceptor to achieve a favorable and ordered molecular orientation and therefore facilitate charge carrier transport. Benefitting from the reduced disorder, the electron mobilities could be significantly enhanced for the"wing"-containing molecules. By carefully changing the length of alkyl chains, the mobility of acceptor has been tuned to match with that of donor, leading to a minimized charge imbalance factor and a high fill factor(FF). We further provide useful design strategies for highly efficient OSCs with high FF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号