首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   1篇
化学   33篇
物理学   5篇
  2023年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
11.
Journal of Thermal Analysis and Calorimetry - Semicrystalline poly(vinylidene fluoride) (PVDF) incorporated with ionic liquids(IL) exhibits applicability as electrolyte. In this paper,...  相似文献   
12.
Various kinds of polyethylene and ethylene copolymers were prepared by non-isothermal crystallization and isothermal crystallization methods. Solar reflectance of all samples was determined by a series of characterization (UV-vis-NIR measurement, wide-angle X-ray diffraction, differential scanning calorimetry analysis, polarized optical microscopy). It was found that lamellar thickness, degree of crystallinity, and microstructure played an important role in affecting the solar reflectance of these polymers. Long-branched chains in ethylene copolymers lowered the solar reflectance by decreasing lamellar thickness and the degree of crystallinity of these polymers. The isothermal crystallization method is a way to promote lamellar thickness and the degree of crystallinity, and make the microstructure more compact.  相似文献   
13.
Electrogenerated PPy doped with pSA was used as a substrate for immobilization of GOD. This was achieved via covalent bonding of carboxyl groups of the main chain of alginate with amino groups of the enzyme. The pH-induced aggregation behavior of SA in aqueous solution was employed to provide optimum conditions for electrochemical preparation of PPy by galvanostatic methods. GOD was attached to the electrode surface by reaction between the carboxyl groups in the main chain of pSA with amino groups of GOD after treatment with EDC and NHS. The linkage of GOD enzyme to the conductive surface was characterized by ATR spectroscopy and SEM CV was used to demonstrate the bioactivity of the enzyme electrode toward glucose.  相似文献   
14.
Designing adsorption materials with high adsorption capacities and selectivities is highly desirable for precious metal recovery. Desorption performance is also particularly crucial for subsequent precious metal recovery and adsorbent regeneration. Herein, a metal–organic framework (MOF) material (NH2-UiO-66) with an asymmetric electronic structure of the central zirconium oxygen cluster has an exceptional gold extraction capacity of 2.04 g g−1 under light irradiation. The selectivity of NH2-UiO-66 for gold ions is up to 98.8 % in the presence of interfering ions. Interestingly, the gold ions adsorbed on the surface of NH2-UiO-66 spontaneously reduce in situ, undergo nucleation and growth and finally achieve the phase separation of high-purity gold particles from NH2-UiO-66. The desorption and separation efficiency of gold particles from the adsorbent surface reaches 89 %. Theoretical calculations indicate that -NH2 functions as a dual donor of electrons and protons, and the asymmetric structure of NH2-UiO-66 leads to energetically advantageous multinuclear gold capture and desorption. This adsorption material can greatly facilitate the recovery of gold from wastewater and can easily realize the recycling of the adsorbent.  相似文献   
15.
赵影  唐然肖  王彤  宋双居 《化学通报》2015,78(12):1154-1157
(1)以磁性碳纳米管吸附处理孔雀石绿溶液,考察了吸附剂用量、孔雀石绿浓度以及温度等对吸附平衡的影响。结果表明,该吸附不受溶液pH值的影响,符合准二级动力学方程(R2>0.999)。不同温度下,该吸附过程满足Langmuir方程(R2>0.97)和Freundlich方程(R2>0.98),qmax、KF随温度升高而变大。D-R等温方程拟合结果表明该吸附的机理是以化学吸附为主。热力学参数计算结果表明,该吸附是一个熵增的自发吸热过程,温度越高越利于吸附的进行。  相似文献   
16.
In this study, tough and high heat‐resistant poly (vinyl chloride) (PVC)/poly (α‐methylstyrene–acrylonitrile) (α‐MSAN) blends (70/30) containing acrylic resin (ACR) as a toughening modifier was prepared. With the addition of ACR, heat distortion temperature increased slightly, which corresponded with the increase in glass transition temperature measured by differential scanning calorimetry and dynamic mechanical thermal analysis. Thermogravimetric analysis showed that addition of ACR improved the thermal stability. With regard to mechanical properties, tough behavior was observed combined with the decrease in tensile strength and flexural strength. A brittle‐ductile transition (BDT) in impact strength was found when ACR content increased from 8 to 10 phr. The impact strength was increased by 34.8 times with the addition of 15 phr ACR. The morphology correlated well with BDT in impact strength. It was also suggested from the morphology that microvoids and shear yielding were the major toughening mechanisms for the ternary blends. Our present study offers insight on the modification of PVC, since combination of α‐MSAN and ACR improves the toughness and heat resistance of pure PVC simultaneously. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
17.
Blends of poly(vinyl chloride) (PVC) and poly(α-methylstyrene-acrylonitrile) (α-MSAN) with variable composition of 0 to 100 wt% were prepared by melt mixing. Properties of binary blends were extensively studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), heat distortion temperature (HDT), mechanical properties, melt flow rate (MFR), and scanning electron microscope (SEM). A single glass transition temperature (Tg ) was observed by DSC and DMTA, indicating miscibility between PVC and α-MSAN. The results of ATR-FTIR indicated that specific strong interactions were not present in the blends and the miscibility was due to interaction between –CN and PVC. With increasing amount of α-MSAN, considerable increase occurred in HDT, flexural strength, and flexural modulus compared with reverse s-shaped decrease in impact strength and elongation at break. Synergism was observed in tensile strength and MFR. No phase separation was observed in SEM photographs, indicating miscibility between PVC and α-MSAN. In addition, morphology of the impact-fractured surfaces, including roughness and non-fused particles, correlated well with the mechanical properties and MFR.  相似文献   
18.
Rubrolones, isatropolones, and rubterolones are recently isolated glycosylated tropolonids with notable biological activity. They share similar aglycone skeletons but differ in their sugar moieties, and rubterolones in particular have a rare deoxysugar antiarose of unknown biosynthetic provenance. During our previously reported biosynthetic elucidation of the tropolone ring and pyridine moiety, gene inactivation experiments revealed that RubS3 is involved in sugar moiety biosynthesis. Here we report the in vitro characterization of RubS3 as a bifunctional reductase/epimerase catalyzing the formation of TDP-d-antiarose by epimerization at C3 and reduction at C4 of the key intermediate TDP-4-keto-6-deoxy-d-glucose. These new findings not only explain the biosynthetic pathway of deoxysugars in rubrolone-like natural products, but also introduce RubS3 as a new family of reductase/epimerase enzymes with potential to supply the rare antiarose unit for expanding the chemical space of glycosylated natural products.

Rubrolones, isarubrolones, and rubterolones are recently isolated glycosylated tropolonids with notable biological activity.  相似文献   
19.
Poly (styrene-co-acrylonitrile) (SAN) is a hydrophilic non-crystalline copolymer, which is initially used in this paper to improve the hydrophilicity of poly (vinylidene fluoride) (PVDF). Investigation of the crystallization behavior of PVDF/SAN blends showed that the samples presented only α phase regardless of SAN content as cooling from the melt. A double-melting phenomenon was related to the perfection or crystal size of PVDF crystals. As the SAN content is increasing, crystallization of PVDF was limited, leading to a decreased crystallinity and lamellar growth. Besides, the hydrophilicity of PVDF was improved by blending with SAN. The sample containing 70 wt.% SAN performed a similar surface property of the neat SAN owing to the besieging of the PVDF phase by SAN. Observed from the cross section of the blends, PVDF/SAN blends were partially miscible with less than 50 wt.% SAN addition. As the SAN content was more than 50 wt.%, the crystalline PVDF particles clearly dispersed in the amorphous matrix.  相似文献   
20.
Poly(vinylidene fluoride) (PVDF) blend microporous membranes were prepared by PVDF/poly(methyl methacrylate) blend (with mass ratio = 70/30) via thermally induced phase separation. Benzophenone (BP) and methyl salicylate (MS) were used as diluents. The phase diagram calculations were carried out in terms of a pseudobinary system, considering the PVDF blend to be one component. The crytallization behaviors of PVDF in the dilutions were detected by differential scanning calorimetry measurement. In these two systems, the melting and crystallization temperatures leveled off in the low polymer concentration (<40 wt %), but shifted to a higher temperature when the polymer concentration >40 wt %. The calculated crystallinity of PVDF for samples with low polymer concentrations was greater than those with high polymer concentrations, because of the limited mobility of polymer chains at a high polymer concentration. The membrane structure as determined by scanning electron microscopy depended on the phase separation mechanism. The quenched samples mainly illustrated the occurrence of crystallization on the same time scale as the liquid–liquid phase separated, resulting in the obvious spherulitic structure with small pores in the spherulites. As the polymer concentration increased, the size of the spherulites and pores within the spherulite was decreased. The evaluated porosity for BP diluted system was higher than that for MS diluted system, and decreased with the increased polymer concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 248–260, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号