首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   4篇
化学   206篇
晶体学   7篇
力学   3篇
数学   15篇
物理学   64篇
  2022年   5篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   32篇
  2012年   16篇
  2011年   13篇
  2010年   7篇
  2009年   7篇
  2008年   15篇
  2007年   16篇
  2006年   13篇
  2005年   9篇
  2004年   15篇
  2003年   10篇
  2002年   22篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
  1964年   1篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
71.
The fundamental properties and extraction capability of an ionic liquid (IL), trioctylammonium nitrate ([HTOA][NO3]), for PdII and PtIV, are investigated. At room temperature, [HTOA][NO3] is a solid (melting point: 30.7 °C), but it becomes a liquid (melting point: 16.7 °C) when saturated with water. Water-saturated [HTOA][NO3] exhibits a viscosity of 267.1 mPa·s and an aqueous solubility of 2.821?×?10?4 mol·dm?3 at 25 °C, and can be used as an extraction solvent without dilution. [HTOA][NO3] exhibits an extremely high extraction capability for PdII and PtIV in dilute hydrochloric acid (0.1–2 mol·dm?3 HCl); the distribution ratio reaches 3 × 104 for both the metals. From electrospray ionization mass spectrometry analysis, the species extracted in the IL phase are [PdCl3]? and [PdCl2(NO3)]? for PdII and [PtCl6]2? and [PtCl5]? for PtIV. A majority of the other transition metals are considerably less or marginally extracted into [HTOA][NO3] from a 0.1 mol·dm?3 hydrochloric acid solution. The extraction capacity of [HTOA][NO3] is greater than that of other hydrophobic ILs such as [HTOA]Cl and bis(trifluoromethanesulfonyl)imide-based ILs. The metals extracted into the IL phase are quantitatively back-extracted using an aqueous solution containing thiourea and nitric acid. By controlling the thiourea concentration and shaking time, PdII and PtIV are mutually separated to some extent in the back extraction process. The IL phase used for the back extraction can be reused for the forward extraction of these metals after scrubbing it with an aqueous nitric acid solution.  相似文献   
72.
The chemical and electrical stabilities of 7,7,8,8-tetracyanoquinodimethane (TCNQ) salts composed of neutral TCNQ (TCNQ?), anion radicals of TCNQ(TCNQ?·), and polycation polymers were studied by measuring their electronic spectra and resistivities (ρ). The results of spectral and chemical analyses confirmed that TCNQ?· in TCNQ salts was decomposed to α,α-dicyano-p-toluoylcyanide (DTC?) as the final product by the intermediate formation of TCNQ? and p-phenylenediamalononitrile (H2TCNQ) and that H2O played an important part in the reaction. From these results it was concluded that TCNQ salts are decomposed by two reaction processes: The resistivity of TCNQ salts increases with the decomposition of TCNQ?·. Studies on electroconductivity of TCNQ salts assume that the change in resistivity arises from the loss of unpaired electrons which become conduction carriers and also from the disintegration of the TCNQ? and TCNQ?· complex which forms the conduction path.  相似文献   
73.
The first total synthesis of E. coli lipid A (1) is described. The synthetic compound was identical with a natural specimen and exhibited the full endotoxic activity. It was thus conclusively proved by this chemical synthesis that lipid A is the active principle of bacterial endotoxin.  相似文献   
74.
The formation of the liquid crystal phase of a surface-active dye, p-octylphenol yellow amine poly(ethylene oxide), in aqueous methanol solutions has been examined by optical microscopy. Rodlike swarms appear at relatively low dye concentrations only slightly higher than the second critical micelle concentration. They develop into liquid crystal phase when the dye concentration is further increased. It takes some hours for the formation of a stripe-like texture characteristic of nematic liquid crystals, depending on the methanol content and dye concentration. The combination of the surface active-part and the azobenzene moiety would be responsible for the formation of the liquid crystal.  相似文献   
75.
Magnetic susceptibility and electrical resistivity of α-Gd2S3 with an orthorhombic structure (space group: Pnma) have been measured for powder and single-crystal samples. While the magnetic susceptibility of powder sample exhibits a broad peak having a maximum at 4.2 K, the susceptibility for a single crystal with an applied magnetic field along the b-axis demonstrates a sharp drop below 10 K. Nevertheless, the susceptibility with the field perpendicular to the b-axis keeps increasing with decreasing temperature even below 10 K. The electrical resistivity ρ for the powder sample of 4.2×103 Ω cm around room temperature increases with decreasing temperature and shows a slight discontinuity at about 65 K. In both regions above and below 65 K, is proportional to T−1/4 with respective coefficients, which is associated with Mott variable-range hopping conductivity. The resistivity of a single crystal along the b-axis is considerably smaller than the value for the powder sample as 0.35 Ω cm at room temperature, and its temperature dependence is fairly weak. While cooling, the resistivity first decreases down to 240 K and then keeps the value independent of the temperature down to 140 K, and subsequently rises gently below 140 K.  相似文献   
76.
The ion-pair formation constant (K(MLA)(0) in mol(-1) dm(3)) for Li(B15C5)(+) with a picrate ion (Pic(-)) in water was determined by potentiometry with a K(+)-selective electrode at 25 degrees C and an ionic strength of 0, where B15C5 denotes benzo-15-crown-5 ether. Using the concentration equilibrium constants, K(MLA), estimated from this value, the extraction constants (mol(-2) dm(6) unit) of about ten diluents were re-calculated from previously reported extraction data. Also, the distribution constants of an ion-pair complex, Li(B15C5)Pic, between water and the diluents were re-estimated. A disagreement in the determined K(MLA) value between a solvent-extraction method and potentiometry was explained in terms of the Scatchard-Hildebrand equation; it came from the fact that the hydration of Li(I) in Li(B15C5)Pic was larger than that of free B15C5 in water. Then, the previously determined value by the former method was re-estimated using the potentiometric K(MLA) value.  相似文献   
77.
78.
79.
80.
Chemistry-based investigation is reviewed which led to identification of the active entities responsible for the immunostimulating potencies of peptidoglycan and lipopolysaccharide. Though these glycoconjugates which ubiquitously occur in wide range of bacteria as the essential components of their cell envelopes have long been known to enhance the immunological responses of higher animals, neither the precise chemical structures required nor the mechanism of their action remained to be elucidated until early 1970s. Chemical synthesis of partial structures of peptidoglycan proved N-acetylmuramyl-L-alanyl-D-isoglutamine to be the minimum structure responsible for the activity and led to later identification of its receptor protein Nod2 present in animal cells. Another active partial structure of peptidoglycan, γ-D-glutamyl-meso-diaminopimelic acid, and its receptor Nod1 were also identified as well. With regard to lipopolysaccharide, its glycolipid part named lipid A was purified and the structure studied. Chemically synthesized lipid A according to the newly elucidated structure exhibited full activity described for lipopolysaccharide known as endotoxin. Synthetic homogeneous lipid A and its structural analogues and labeled derivatives enabled precise studies of their interaction with receptor proteins and the mechanism of their action. Chemical synthesis of homogeneous partial structures of peptidoglycan and lipopolysaccharide gave unequivocal evidences for the concept that definite small molecular parts of these complex macromolecular bacterial glycoconjugates are specifically recognized by their respective receptors and trigger our defense system now widely recognized as innate immunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号