首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   4篇
  国内免费   1篇
化学   60篇
力学   3篇
数学   3篇
物理学   10篇
  2024年   3篇
  2022年   7篇
  2021年   3篇
  2020年   5篇
  2019年   7篇
  2018年   5篇
  2017年   2篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1993年   2篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1977年   2篇
  1976年   3篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
71.
Two sensitive and selective spectrofluorimetric and spectrophotometric stability-indicating methods have been developed for the determination of some non-steroidal anti-inflammatory oxicam derivatives namely lornoxicam (Lx), tenoxicam (Tx) and meloxicam (Mx) after their complete alkaline hydrolysis. The methods are based on derivatization of alkaline hydrolytic products with 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). The products showed an absorption maximum at 460 nm for the three studied drugs and fluorescence emission peak at 535 nm in methanol. The color was stable for at least 48 h. The optimum conditions of the reaction were investigated and it was found that the reaction proceeds quantitatively at pH 8, after heating in a boiling water bath for 30 min. The methods were found to be linear in the ranges of 1-10 microg ml(-1) for Lx and Tx and 0.5-4.0 microg ml(-1) for Mx for spectrophotometric method, while 0.05-1.0 microg ml(-1) for Lx and Tx and 0.025-0.4 microg ml(-1) for Mx for the spectrofluorimetric method. The validity of the methods was assessed according to USP guidelines. Statistical analysis of the results revealed high accuracy and good precision. The suggested procedures could be used for the determination of the above mentioned drugs in pure and dosage forms as well as in the presence of their degradation products.  相似文献   
72.
The accelerating development of technologies requires a significant energy consumption, and consequently the demand for advanced energy storage devices is increasing at a high rate. In the last two decades, lithium‐ion batteries have been the most robust technology, supplying high energy and power density. Improving cathode materials is one of the ways to satisfy the need for even better batteries. Therefore developing new types of positive electrode materials by increasing cell voltage and capacity with stability is the best way towards the next‐generation Li rechargeable batteries. To achieve this goal, understanding the principles of the materials and recognizing the problems confronting the state‐of‐the‐art cathode materials are essential prerequisites. This Review presents various high‐energy cathode materials which can be used to build next‐generation lithium‐ion batteries. It includes nickel and lithium‐rich layered oxide materials, high voltage spinel oxides, polyanion, cation disordered rock‐salt oxides and conversion materials. Particular emphasis is given to the general reaction and degradation mechanisms during the operation as well as the main challenges and strategies to overcome the drawbacks of these materials.  相似文献   
73.
The transfer of peptides identified through the phage display technology to clinical applications is difficult. Major drawbacks are the metabolic degradation and label instability. The aim of our work is the optimization of DUP-1, a peptide which was identified by phage display to specifically target human prostate carcinoma. To investigate the influence of chelate conjugation, DOTA was coupled to DUP-1 and labeling was performed with 111In. To improve serum stability cyclization of DUP-1 and targeted D-amino acid substitution were carried out. Alanine scanning was performed for identification of the binding site and based on the results peptide fragments were chemically synthesized. The properties of modified ligands were investigated in in vitro binding and competition assays. In vivo biodistribution studies were carried out in mice, carrying human prostate tumors subcutaneously. DOTA conjugation resulted in different cellular binding kinetics, rapid in vivo renal clearance and increased tumor-to-organ ratios. Cyclization and D-amino acid substitution increased the metabolic stability but led to binding affinity decrease. Fragment investigation indicated that the sequence NRAQDY might be significant for target-binding. Our results demonstrate challenges in optimizing peptides, identified through phage display libraries, and show that careful investigation of modified derivatives is necessary in order to improve their characteristics.  相似文献   
74.
A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adaptation equation of the original FLMS algorithm and absorb the gamma function in the fractional step size parameter. This approach provides an interesting achievement in the performance of the filter in terms of handling the nonlinear problems with less computational burden by avoiding the evaluation of complex gamma function. We call this new algorithm as the modified fractional least mean square (MFLMS) algorithm. The predictive performance for the nonlinear Mackey glass chaotic time series is observed and evaluated using the classical LMS, FLMS, kernel LMS, and proposed MFLMS adaptive filters. The simulation results for the time series with and without noise confirm the superiority and improvement in the prediction capability of the proposed MFLMS predictor over its counterparts.  相似文献   
75.
The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box–Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer–Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations.  相似文献   
76.
对化石能源的依赖所造成的环境污染和能源危机在全球引起了广泛的关注.氢能由于其高能量密度、低分子质量以及清洁无污染的优点,被认为是人类根本性解决能源与环境等全球性问题的理想替代能源.电解水是生产高纯度氢的重要方法,是现代清洁能源技术的重要组成部分.水电解由阴极析氢(HER)和阳极析氧(OER)两个半反应构成.对于HER反应,其反应是基于二电子转移过程,反应过程相对容易进行.相比于HER反应,OER反应涉及四电子转移及氧-氧键形成,其反应动力学缓慢,是影响水电解效率的主要原因.因此,为了提高电解水制氢的能量转化效率,发展OER电催化剂成为水电解制氢技术的关键.在过去的十余年间,硫化物、硒化物、磷化物、硼化物等非贵金属基OER电催化剂被大量地研究及报道并取得了长足发展.在这些催化剂中,金属磷化物和硫化物不仅具有成本优势,而且在析氧过电位、耐久性方面正趋接近甚至超越RuO_2和IrO_2等贵金属催化剂,颇具应用潜力.本文总结磷化物和硫化物作为OER电催化剂的研究进展,重点介绍了磷化物和硫化物性能提升策略及其在OER过程中催化反应活性位的变化.本文首先介绍了电解水析氧反应在不同电解质中的反应机理,讨论了析氧反应在动力学和热力学过程的主要障碍.通过对大量文献的归纳,本文分别综述了磷化物和硫化物的化学性质、合成方法和催化性能,介绍了近年来磷化物和硫化物的重要研究进展.通过分析催化剂导电性、质子传输、活性面积、界面化学等因素对催化析氧反应的影响,总结了磷化物和硫化物电催化OER性能提升的策略.由于磷化物和硫化物在OER强氧化条件下,电催化剂表面的成分、物相及结构均会发生显著变化,进而催化反应活性位也会发生相应改变.本文综述了磷化物和硫化物在OER反应过程前后表面组分的变化,探讨了磷化物和硫化物作为OER电催化剂的活性组分,为进一步提高磷化物和硫化物的电催化析氧反应性能提供了崭新的思路.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号