首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   4篇
  国内免费   1篇
化学   60篇
力学   3篇
数学   3篇
物理学   10篇
  2024年   3篇
  2022年   7篇
  2021年   3篇
  2020年   5篇
  2019年   7篇
  2018年   5篇
  2017年   2篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1993年   2篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1977年   2篇
  1976年   3篇
排序方式: 共有76条查询结果,搜索用时 62 毫秒
41.
Two sensitive and selective methods were developed for the determination of some oxicams, namely, lornoxicam (LOX), tenoxicam (TEX), and meloxicam (MEX), in the presence of their alkaline degradation products. The first method is based on the thin-layer chromatographic separation of the 3 drugs from their alkaline degradation products, followed by densitometric measurement of the intact drug spots for LOX, TEX, and MEX at 380, 370, and 364 nm, respectively. The developing systems used for separation are ethyl acetate-methanol-26% ammonia (17 + 3 + 0.35, v/v/v) for LOX and TEX and chloroform-n-hexane-96.0% acetic acid (18 + 1 + 1, v/v/v) for MEX. The linear ranges were 0.25-6.0 microg/spot for LOX and TEX and 0.5-10 microg/spot for MEX, with mean recoveries of 99.80 +/- 1.32, 100.57 +/- 1.34, and 100.71 +/- 1.57%, respectively. The second method is based on the liquid chromatographic separation of the 3 drugs from their alkaline degradation products on a reversed-phase C18 column, using mobile phases of methanol-acetonitrile-acetate buffer, pH 4.6 (4.5 + 0.5 + 5.0, v/v/v) for LOX and MEX and methanol-acetonitrile-acetate buffer, pH 4.6 (1.9 + 0.1 + 3.0, v/v/v) for TEX at ambient temperature. Quantification is achieved by UV detection at 280 nm, based on peak area. The linear ranges were 0.5-20 microg/mL for LOX and TEX and 1.25-50 microg/mL for MEX, with mean recoveries of 99.81 +/- 1.01, 98.90 +/- 1.61, and 100.86 +/- 1.55%, respectively. The methods were validated according to guidelines of the International Conference on Harmonization. The developed methods were successfully applied to the determination of LOX, TEX, and MEX in bulk powder, laboratory-prepared mixtures containing different percentages of degradation products, and pharmaceutical dosage forms.  相似文献   
42.
An experimental study of swirling turbulent flow through a curved bend and its downstream tangent has been carried out. This study reports on the recovery from swirl and bend curvature and relies on measurements obtained in the downstream tangent and data reported in Part 1 to assess the recovery. Unlike the nonswirling flow case, the present measurements show that the cross-stream secondary flow is dominated by the decay of the solid-body rotation and the total wall shear stress measured at the inner and outer bend (furthest away from the bend center of curvature) is approximately equal. The shear distribution is fairly uniform, even at 1 D downstream of the bend exit. At 49D downstream of the bend exit, the mean axial velocity has recovered to its measured profile at 18D upstream of the bend entrance. Furthermore, the mean tangential velocity is close to zero everywhere and the turbulent shear and normal stresses take another 15D to approximately approach their stationary straight pipe values. Therefore, complete flow recovery from swirl and bend curvature takes a total length of about 85D from the bend entrance. This compares with a recovery length of about 78D for bend curvature alone. The recovery length is substantially shorter than that measured previously in swirling flow through straight pipes and is a consequence of the angular momentum decreasing by approximately 74% across the curved bend. Consequently, the effect of bend curvature is to accelerate swirl decay in a pipe flow.List of symbols C f total skin friction coefficient, = 2 w / w 0 2 - D pipe diameter, = 7.62 cm - De Dean number, = 1/2 Re = 13,874 - M angular momentum - N s swirl number, = D/2 W 0 = 1 - r radial coordinate - R mean bend radius of curvature, = 49.5 cm - Re pipe Reynolds number, = DW 0 /v= 50,000 - S axial coordinate along the upstream (measured negative) and downstream (measured positive) tangent - U, V, W mean velocities along the radial, tangential and axial directions, respectively - u, v, w mean fluctuating velocities along the radial, tangential and axial directions, respectively - u, v, w root mean square normal stress along the radial, tangential and axial directions, respectively - W 0 mean bulk velocity, 10 m/s - w total wall friction velocity, = w / - (w ) s total wall friction velocity measured as S/D = -18 - turbulent shear stresses - pipe-to-bend radius ratio, = D/2R = 0.077 - axial coordinate measured from bend entrance - fluid kinetic viscosity - fluid density - w total wall shear stress - azimuthal coordinate measured zero from pipe horizontal diameter near outer bend - angular speed of the rotating section  相似文献   
43.
Two simple, sensitive and specific fluorimetric methods have been developed for the determination of some sulphur containing compounds namely, Acetylcysteine (Ac), Carbocisteine (Cc) and Thioctic acid (Th) using terbium Tb+3 and uranium U+3 ions as fluorescent probes. The proposed methods involve the formation of a ternary complex with Tb+3 in presence of Tris-buffer method (I) and a binary complex with aqueous uranyl acetate solution method (II). The fluorescence quenching of Tb+3 at 510, 488 and 540 nm (λex 250, 241 and 268 nm) and of uranyl acetate at 512 nm (λex 240 nm) due to the complex formation was quantitatively measured for Ac, Cc and Th, respectively. The reaction conditions and the fluorescence spectral properties of the complexes have been investigated. Under the described conditions, the proposed methods were applicable over the concentration range (0.2–2.5 μg ml−1), (1–4 μg ml−1) and (0.5–3.5 μg ml−1) with mean percentage recoveries 99.74±0.36, 99.70±0.52 and 99.43±0.23 for method (I) and (0.5–6 μg ml−1), (0.5–5 μg ml−1), and (1–6 μg ml−1) with mean percentage recoveries 99.38±0.20, 99.82±0.28 and 99.93±0.32 for method (II), for the three cited drugs, respectively. The proposed methods were successfully applied for the determination of the studied compounds in bulk powders and in pharmaceutical formulations, as well as in presence of their related substances. The results obtained were found to be in agree statistically with those obtained by official and reported ones. The two methods were validated according to USP guidelines and also assessed by applying the standard addition technique.  相似文献   
44.
Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g−1, signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g−1, highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.  相似文献   
45.
Heteroatom doping is considered an efficient strategy when tuning the electronic and structural modulation of catalysts to achieve improved performance towards renewable energy applications. Herein, we synthesized a series of carbon-based hierarchical nanostructures through the controlled pyrolysis of Co-MOF (metal organic framework) precursors followed by in situ phosphidation. Two kinds of catalysts were prepared: metal nanoparticles embedded in carbon nanotubes, and metal nanoparticles dispersed on the carbon surface. The results proved that the metal nanoparticles embedded in carbon nanotubes exhibit enhanced ORR electrocatalytic performance, owed to the enriched catalytic sites and the mass transfer facilitating channels provided by the hierarchical porous structure of the carbon nanotubes. Furthermore, the phosphidation of the metal nanoparticles embedded in carbon nanotubes (P-Co-CNTs) increases the surface area and porosity, resulting in faster electron transfer, greater conductivity, and lower charge transfer resistance towards ORR pathways. The P-Co-CNT catalyst shows a half-wave potential of 0.887 V, a Tafel slope of 67 mV dec−1, and robust stability, which are comparatively better than the precious metal catalyst (Pt/C). Conclusively, this study delivers a novel path for designing multiple crystal phases with improved catalytic performance for energy devices.  相似文献   
46.
Journal of Thermal Analysis and Calorimetry - The present paper deals with numerical simulation and triple-objective optimization of a double-tube heat exchanger equipped with an elliptic cross...  相似文献   
47.
In this paper, the main focus of this research is to represent an intelligent computing model through an artificial backpropagated Levenberg-Marquardt neural network (ABP-LMNN) for entropy optimized magnetohydrodynamic fully developed nanofluid flow with slip and activation energy effects. In mathematical modeling, dimensionless non-linear ODEs represent the magnetohydrodynamic nanofluid flow model (MHD-NFM). A reference dataset of ABP-LMNN is constructed for diverse situations of MHD-NFM by discrepancy of parameters. The attained reference dataset (RD) is randomly utilized for validation, testing and training processes for ABP-LMNN are employed to examine the approximate solution of MHD-NFM is demonstrated by comparison of outcomes. The authentic performance of the ABP-LMNN is validated through accuracy in the phrase of error histogram, mean square error and regression learning. The thermal and solutal parameters upsurge both the thermal and the concentration gradients. Moreover, the velocity profiles are declined owing to an increase in the second-order slip parameter in the tangential direction of the flow.  相似文献   
48.

Background

For therapeutic monitoring and pharmacokinetic studies of lenalidomide (LND), the potent drug for treatment of multiple myeloma (MM), a specific antibody was required for the development of a sensitive immunoassay system for the accurate determination of LND in plasma.

Results

In this study, a hapten of LND (N-glutaryl-LND) was synthesized by introducing the glutaryl moiety, as a spacer, into the primary aromatic amine site of the LND molecular structure. The structure of the hapten (G-LND) was confirmed by mass, 1H-NMR, and 13C spectrometric techniques. G-LND was coupled to each of bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH) proteins by ethyl-3-(3-dimethylaminopropyl) carbodiimide as a coupling reagent. LND-KLH conjugate was used as an immunogen. Four female 2-3 months old New Zealand white rabbits were immunized with an emulsion of LND-KLH with Freund`s adjuvant. The immune response of the rabbits was monitored by direct enzyme-linked immunosorbent assay (ELISA) using LND-BSA immobilized onto microwell plates as a solid phase. The rabbit that showed the highest antibody titer and affinity to LND was scarified and its sera were collected. The IgG fraction was isolated and purified by affinity chromatography on protein A column. The specificity of the purified antibody for LND was evaluated by indirect competitive ELISA using dexamethasone as a competitor as it is used with LND in a combination therapy.

Conclusions

The high affinity of the antibody (IC50 = 10 ng/mL) will be useful in the development of an immunoassay system for the determination of plasma LND concentrations. Current research is going to optimize the assay conditions and validate the procedures for the routine application in clinical laboratories.  相似文献   
49.
In?vitro antifungal activity and phytochemical constituents of essential oil, aqueous, methanol and chloroform extract of Eucalyptus citriodora Hook leaves were investigated. A qualitative phytochemical analysis was performed for the detection of alkaloids, cardiac glycosides, flavonoids, saponins, sterols, tannins and phenols. Methanolic extract holds all identified biochemical constituents except for the tannin. While these biochemical constituents were found to be absent in essential oil, aqueous and chloroform extracts with the exception of sterols, cardiac glycosides and phenols in essential oil and sterols and phenols in aqueous and chloroform extracts. Antimycotic activity of four fractions of E. citriodora was investigated through agar-well diffusion method against four post-harvest fungi, namely, Aspergillus flavus Link ex Gray, Aspergillus fumigatus Fres., Aspergillus nidulans Eidam ex Win and Aspergillus terreus Thom. The results revealed maximum fungal growth inhibition by methanolic extract (14.5%) followed by essential oil (12.9%), chloroform extract (10.15%) and aqueous extract (10%).  相似文献   
50.
Complex multilayer thin film filters for optical applications have been designed, prepared and characterized in this work. E-beam reactive evaporation technique has been used as a deposition process. In the first stage, optimized individual film layers of TiO2, Ta2O5, and SiO2 are deposited and characterized optically and structurally before the deposition of multilayered structures. The filter designs are based upon 33 layered SiO2/TiO2 and SiO2/Ta2O5 configurations on glass substrate. These designs are optimized to achieve wideband transmission in the visible spectrum. After deposition, the two filter configurations are characterized optically and structurally using spectrophotometery, atomic force microscopy (AFM), X-ray diffraction (XRD) and scanning electron microscopy (SEM). SiO2/Ta2O5/glass filter has been found sensitive to deposition conditions since high absorption is observed in multilayered configuration for the as-deposited samples. Post-deposition annealing of the filter in the temperature range 150 to 250°C was also performed in order to study the effect of temperature on absorption and spectral characteristics of the filter. Comparison of the two filter configurations was also performed to analyze their suitability for optical applications. Adhesion of the two filters was found to be very good by means of tape-peel test.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号