首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
化学   7篇
物理学   17篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2003年   2篇
  1990年   1篇
排序方式: 共有24条查询结果,搜索用时 0 毫秒
21.
In this work, the role of conducting [poly (p-phenylinevinylene) (PPV)] and nonconducting (polystyrene) polymers on the properties of their respective composites with CdSe quantum dots of varied sizes has been investigated. The emission and structural properties of polymer–CdSe composites are found to be dependent on the crystallite size and morphology of CdSe nanocrystallites. Smaller CdSe quantum dots (size, ∼5 nm) ensures efficient charge transfer process across polymer–CdSe interface as evident by almost complete quenching of photoluminescence (PL) emission as compared to larger CdSe quantum dots (size, ∼7 nm). Presence of residual trioctylphosphine (TOP)/ tri-n-octylphosphine-oxide (TOPO) species and agglomeration of particles act as a hindrance for quenching of emission and hence charge transfer for larger CdSe nanocrystallites. Emission studies indicated an increased conjugation length for PPV polymers in different solvents (toluene, pyridine) and in solid state. Nonconducting polymer polystyrene shows charge transfer across polymer–CdSe interface as well. However, polystyrene polymer has a shorter chain length, which ensures maximum coverage on the surface of CdSe nanocrystallites and provides better photostability to CdSe QDs within the polymer matrix as compared to that for PPV–CdSe nanocomposites.  相似文献   
22.
Charge‐transfer (CT) complexes of near‐infrared absorbing systems have been unknown until now. Consequently, structural similarities between donor and acceptor are rather important to achieve this phenomenon. Herein, we report electron donors such as non‐fused diporphyrin‐anthracene (DP), zinc diporphyrin‐anthracene (ZnDP) and fused zinc diporphyrin‐anthracene (FZnDP) in which FZnDP absorbs in NIR region and permits a CT complex with the electron acceptor, perylene diimide (PDI ) in CHCl3 exclusively. UV/Vis‐NIR absorption, 1H NMR, NOESY and powder X‐ray diffraction analysis demonstrated that the CT complex formation occurs by π–π stacking between perylene units in FZnDP and PDI upon mixing together in a 1:1 molar concentration in CHCl3, unlike non‐fused ZnDP and DP. TEM and AFM images revealed that the CT complex initially forms nanospheres leading to nanorods by diffusion of CH3OH vapors into the CHCl3 solution of FZnDP/PDI (1:1 molar ratio). Therefore, these CT nanorods could lead to significant advances in optical, biological and ferroelectric applications.  相似文献   
23.
Voltage‐stimulated redox‐active materials have received significant attention in the field of organic electronics and sensor technology. Such stimuli‐responsive materials trigger the formation of crystalline nanostructures and facilitate the design of efficient smart devices hitherto unknown. Herein, we report that free‐base and metallo‐tetratolylporphyrin‐linked ferrocene derivatives ( H2TTP ‐ Fc and ZnTTP ‐ Fc ) undergo distinct proton/anion binding mechanism in CHCl3 during bulk electrolysis at applied voltage of 1.4 V to give [ H4TTP ‐ Fc]+Cl? and H+ [ (Cl)ZnTTP ‐ Fc]? followed by nanospheres and crystalline 2D nanoflakes formation, confirmed by SEM and TEM images, by methanol vapor diffusion (MVD) approach. Moreover, X‐ray diffraction analysis suggest that protonated H2TTP ‐ Fc aggregates exhibit amorphous nature, whereas H+ [ (Cl)ZnTTP ‐ Fc]? depict crystalline nature from layer‐by‐layer arrangement of nanoflakes assisted by π–π stacking and ion‐dipole interactions.  相似文献   
24.
Motivated by the need to form 1D-nanostructured dopants on silicon surfaces, we have attempted to grow Ga on the high index Si(5 5 12) surface which has a highly trenched (1D) morphology. The evolution of the interface with Ga adsorption in the monolayer regime has been probed by in situ AES, LEED and EELS. Controlling the kinetics by changing the Ga flux rates shows an interesting difference in the 1.0 to 1.5 ML region. The low flux rate (0.03 ML/minute) results in a Frank van der Merwe (layer by layer) growth mode up to 2 ML, while the higher flux rate (0.1 ML/minute) shows a transient island formation after the completion of 1 ML. The low rate shows the formation of 2 × (3 3 7) and (2 2 5) superstructures, while only the 2 × (3 3 7) is observed in a wide coverage range for the higher rate. The results demonstrate the ability to kinetically control the surface phases with different electronic properties of this technologically important interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号