首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   11篇
  国内免费   4篇
化学   122篇
力学   7篇
数学   54篇
物理学   32篇
  2023年   4篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   6篇
  2018年   2篇
  2017年   4篇
  2016年   10篇
  2015年   2篇
  2014年   9篇
  2013年   16篇
  2012年   14篇
  2011年   20篇
  2010年   14篇
  2009年   10篇
  2008年   17篇
  2007年   14篇
  2006年   9篇
  2005年   5篇
  2004年   7篇
  2003年   10篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1980年   1篇
  1975年   1篇
排序方式: 共有215条查询结果,搜索用时 78 毫秒
91.
W. Sierpiski showed that each x in 0<x1 has a representation1/a1...ak is an increasing sequence of positive integers. Weshow that the subset of numbers x for which(ak) is strictlyincreasing is a Cantor set.  相似文献   
92.
Thermolysis of (H2CPz′2)M(CO)4 (H2CPz′2 = bis(3,5-dimethylpyrazol-1-yl)methane; M=Mo, W) in 1,2-dimethoxyethane did not give the expected 16-electron complexes, (H2CPz′2)M(CO)3, but gave dinuclear compounds, [(H2CPz′2)M(CO)3]2, probably containing two linear carbonyl bridges and no metal-metal interactions. The dimers reacted with CH3CN to give mononuclear compounds, (H2CPz′2)M(CO)3(NCCH3), identical to the substitution products between (H2CPz′2)M(CO)4 and CH3CN.  相似文献   
93.
Lithiophorite consists of alternatively stacked MnO6 octahedral sheets and LiAl2(OH)6 octahedral sheets. Its applications in laboratories and industries have been hindered by sophisticated operation procedures, long reaction time, or impurities existing in the final product. We proposed a fast and simple method, mixing birnessite, aluminate and lithium hydroxide together (designated it as the BAL method) in high alkaline conditions (pH > 13), and treating it hydrothermally at 423 K for 6 hours to prepare pure lithiophorite. A specific reaction between lithium cations and aluminate anions plays as a key role in the BAL method. Due to this specific reaction, LixAln(OH)m+z complexed cations can form and penetrate into interlayers of birnessite to replace sodium cations. In high alkaline conditions (pH > 12), LixAln(OH)m+z complexed cations become smaller and are soluble. Thus, the higher alkaline LixAln(OH)m+z complexed cations can penetrate into interlayers of birnessite at a higher rate. Furthermore, impurities, such as lithium intercalated gibbsite (LIG), aluminum oxyhydroxides and aluminum hydroxides are not stable in high alkaline conditions. Consequently, pure lithiophorite can be easily obtained within 6 hours in high alkaline conditions.  相似文献   
94.
95.
Treatment of [Ru2(CO)4(MeCN)6][BF4]2 or [Ru2(CO)4(μ-O2CMe)2(MeCN)2] with uni-negative 1,1-dithiolate anions via potassium dimethyldithiocarbamate, sodium diethyldithiocarbamate, potassium tert-butylthioxanthate, and ammonium O,O′-diethylthiophosphate gives both monomeric and dimeric products of cis-[Ru(CO)22-(SS))2] ((SS)=Me2NCS2 (1), Et2NCS2 (2), tBuSCS2 (3), (EtO)2PS2 (4)) and [Ru(CO)(η2-(Me2NCS2))(μ,η2-Me2NCS2)]2 (5). The lightly stabilized MeCN ligands of [Ru2(CO)4(MeCN)6][BF4]2 are replaced more readily than the bound acetate ligands of [Ru2(CO)4(μ-O2CMe)2(MeCN)2] by thiolates to produce cis-[Ru(CO)22-(SS))2] with less selectivity. Structures 1 and 5 were determined by X-ray crystallography. Although the two chelating dithiolates are cis to each other in 1, the dithiolates are trans to each other in each of the {Ru(CO)(η2-Me2NCS2)2} fragment of 5. The dimeric product 5 can be prepared alternatively from the decarbonylation reaction of 1 with a suitable amount of Me3NO in MeCN. However, the dimer [Ru(CO)(η2-Et2NCS2)(μ,η2-Et2NCS2)]2 (6), prepared from the reaction of 2 with Me3NO, has a structure different from 5. The spectral data of 6 probably indicate that the two chelating dithiolates are cis to each other in one {Ru(CO)(η2-Et2NCS2)2}fragment but trans in the other. Both 5 and 6 react readily at ambient temperature with benzyl isocyanide to yield cis-[Ru(CO)(CNCH2Ph)(η2-(SS))2] ((SS)=Me2NCS2 (7) and Et2NCS2 (8)). A dimerization pathway for cis-[Ru(CO)22-(SS))2] via decabonylation and isomerization is proposed.  相似文献   
96.
As a general case of molecular graphs of polycyclic alternant hydrocarbons, we consider a plane bipartite graph G with a Kekulé pattern (perfect matching). An edge of G is called nonfixed if it belongs to some, but not all, perfect matchings of G. Several criteria in terms of resonant cells for determining whether G is elementary (i.e., without fixed edges) are reviewed. By applying perfect matching theory developed in plane bipartite graphs, in a unified and simpler way we study the decomposition of plane bipartite graphs with fixed edges into normal components, which is shown useful for resonance theory, in particular, cell and sextet polynomials. Further correspondence between the Kekulé patterns and Clar (resonant) patterns are revealed.  相似文献   
97.
Let (x) be the error term associated with the asymptotic formulafor the counting function on the set of numbers that are sumsof three squares. We give a formula for (x) and use it to provethat (x) has average order and normal order 3 1og x/(16 1og2).  相似文献   
98.
The electron positive boron atom usually does not contribute to the frontier orbitals for several lower‐lying electronic transitions, and thus is ideal to serve as a hub for the spiro linker of light‐emitting molecules, such that the electron donor (HOMO) and acceptor (LUMO) moieties can be spatially separated with orthogonal orientation. On this basis, we prepared a series of novel boron complexes bearing electron deficient pyridyl pyrrolide and electron donating phenylcarbazolyl fragments or triphenylamine. The new boron complexes show strong solvent‐polarity dependent charge‐transfer emission accompanied by a small, non‐negligible normal emission. The slim orbital overlap between HOMO and LUMO and hence the lack of electron correlation lead to a significant reduction of the energy gap between the lowest lying singlet and triplet excited states (ΔET‐S) and thereby the generation of thermally activated delay fluorescence (TADF).  相似文献   
99.
The mobility of the radical center in three isomeric triglycine radical cations[G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) has been investigated theoretically via density functional theory (DFT) and experimentally via tandem mass spectrometry. These radical cations were generated by collision-induced dissociations (CIDs) of Cu(II)-containing ternary complexes that contain the tripeptides YGG, GYG, and GGY, respectively (G and Y are the glycine and tyrosine residues, respectively). Dissociative electron transfer within the complexes led to observation of [Y(*)GG](+), [GY(*)G](+), and [GGY(*)](+); CID resulted in cleavage of the tyrosine side chain as p-quinomethide, yielding [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+), respectively. Interconversions between these isomeric triglycine radical cations have relatively high barriers (> or = 44.7 kcal/mol), in support of the thesis that isomerically pure [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) can be experimentally produced. This is to be contrasted with barriers < 17 kcal/mol that were encountered in the tautomerism of protonated triglycine [Rodriquez C. F. et al. J. Am. Chem. Soc. 2001, 123, 3006-3012]. The CID spectra of [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) were substantially different, providing experimental proof that initially these ions have distinct structures. DFT calculations showed that direct dissociations are competitive with interconversions followed by dissociation.  相似文献   
100.
The hydrothermal reaction of 2,3‐pyridinedicarboxylic acid (2,3‐H2pda) with a mixture of Cd(NO3)2 and Ni(NO3)2 afforded a coordination polymer, [CdNi(2,3‐pda)2(H2O)3] ( 1 ); in contrast, that with a mixture of Cd(NO3)2 and Zn(NO3)2 surprisingly produced a discrete molecule, trans‐[Cd(3‐pa)2(H2O)4] ( 2 ) (3‐pa? = 3‐pyridinecarboxylate). Since a direct reaction between a single metal salt, Cd(NO3)2 or Zn(NO3)2, and 3‐pyridinecarboxylic acid (3‐Hpa) under similar hydrothermal conditions yielded different coordination polymers containing 3‐pa?, it appears that the apparently thermal decarboxylation from ligated 2,3‐pda2? to 3‐pa? occurs after complexation of both metal cations, Cd(II) and Zn(II). A new coordination mode, formed for 2,3‐pda2? in structure 1 , appears to help formation of microporous channels by piling up the observed 2D hydrogen‐bonded heteropolynuclear layers. Each channel apparently consists of two interpenetrating 63 Cd(II) and Ni(II) nets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号