首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   9篇
化学   65篇
晶体学   2篇
力学   2篇
数学   6篇
物理学   27篇
  2023年   1篇
  2022年   1篇
  2020年   6篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   8篇
  2010年   1篇
  2009年   4篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
排序方式: 共有102条查询结果,搜索用时 31 毫秒
21.
An increasingly wide variety of fluorescent compounds is used in biotechnology, genomics, immunoassays, array technologies, imaging, and drug discovery. Therefore, synthesis of fluorophores with novel structural features can be interesting and useful in various fields. In this paper, four new fluorescent heterocyclic compounds with high quantum yields are introduced. These new fluorophores are synthesized in moderate to high yields via regioselective nitration of 3-alkyl-8-(4-chlorophenyl)-3 H-imidazo[4′,5′:3,4]benzo[c]isoxazoles. The latter compounds are obtained from the reaction of 1-alkyl-5-nitro-1 H-benzoimidazoles with (4-chlorophenyl)acetonitrile in basic MeOH solution. Physical spectral (UV-vis, IR, 1HNMR, 13C NMR, NOESY and fluorescence) and analytical data have established the structures of synthesized compounds. The fluorescence properties of new fluorescent heterocyclic compounds are studied. The fluorescence of all compounds is very intense and fluorescence quantum yields are high (> 0.52). Density functional theory (DFT) calculations are performed to provide the optimized geometries, relevant frontier orbitals and the prediction of 1H NMR chemical shifts for confirming the exact structure of fluorescent compounds. Calculated electronic absorption spectra were also obtained by time-dependent density functional theory (TD-DFT) method.
Graphical Abstract ?
  相似文献   
22.
23.
24.
The high accuracy ab initio adiabatic potential energy surfaces (PESs) of the ground electronic state of the water molecule, determined originally by Polyansky et al. [Science 299, 539 (2003)] and called CVRQD, are extended and carefully characterized and analyzed. The CVRQD potential energy surfaces are obtained from extrapolation to the complete basis set of nearly full configuration interaction valence-only electronic structure computations, augmented by core, relativistic, quantum electrodynamics, and diagonal Born-Oppenheimer corrections. We also report ab initio calculations of several quantities characterizing the CVRQD PESs, including equilibrium and vibrationally averaged (0 K) structures, harmonic and anharmonic force fields, harmonic vibrational frequencies, vibrational fundamentals, and zero-point energies. They can be considered as the best ab initio estimates of these quantities available today. Results of first-principles computations on the rovibrational energy levels of several isotopologues of the water molecule are also presented, based on the CVRQD PESs and the use of variational nuclear motion calculations employing an exact kinetic energy operator given in orthogonal internal coordinates. The variational nuclear motion calculations also include a simplified treatment of nonadiabatic effects. This sophisticated procedure to compute rovibrational energy levels reproduces all the known rovibrational levels of the water isotopologues considered, H(2) (16)O, H(2) (17)O, H(2) (18)O, and D(2) (16)O, to better than 1 cm(-1) on average. Finally, prospects for further improvement of the ground-state adiabatic ab initio PESs of water are discussed.  相似文献   
25.
Metallic nanoparticles have gained significant attention in the area of biomedical technology. Because of its high surface area, metallic nanoparticles are being widely used in various fields including the medical and engineering sciences. One of the valuable applications of metallic nanoparticles especially copper, zinc, and iron nanoparticles is increasing the physiological function of central nervous system. Besides, Iranian people are using the Salvia chloroleuca for neuroprotective properties. In the present research, iron nanoparticles were biosynthesized by S. chloroleuca leaf aqueous extract as reducing and stabilizing agents. Also, we revealed the protective effect of FeNPs in methadone-treated PC12 cells. FeNPs were characterized and analyzed using common nanotechnology techniques including FT-IR, UV–Vis. spectroscopy; EDS, TEM, and FE-SEM. TEM and FE-SEM images revealed a uniform spherical morphology for FeNPs. In the biological part of the current study, the both treatments of FeNPs significantly (p ≤ 0.01) reduced the cell cytotoxicity and cell death index as well as increased the cell viability and cell proliferation in methadone-treated PC12 cells. In these treatments, mitochondrial membrane potential significantly (p ≤ 0.01) increased compared to methadone-induced PC12 cells. DPPH free radical scavenging test was did to evaluate the antioxidant potentials of FeCl3, S. chloroleuca, and FeNPs. DPPH test indicated similar antioxidant activities for S. chloroleuca, FeNPs, and butylated hydroxytoluene. In current experiment, we concluded that iron nanoparticles biosynthesized by S. chloroleuca leaf aqueous extract suppressed methadone-induced cell death in a dose-dependent manner in PC12 cells.  相似文献   
26.
A total of 7923 transitions previously derived from long pathlength, Fourier transform spectra of pure water vapor (Schermaul et al., J. Mol. Spectrosc. 211 (2002) 169) have been refitted and reanalyzed using a newly calculated variational linelist. Of these, 6600 lines are weaker than 1 × 10−24 cm/molecule, for which reliable intensities are obtained. These weak lines include 1082 lines, largely due to H216O, which have not been previously observed. A total of 7156 lines were assigned resulting in 329 new energy levels for H216O spread over 32 vibrational levels. Estimates are also given for the band origins of the (022), (140), and (051) vibrational states.  相似文献   
27.
Several oxidative approaches namely thiocyanation of aromatic compounds, epoxidation of alkenes, amidation of aromatic aldehydes, epoxidation of α, β-unsaturated ketones, oxidation of sulfides to sulfoxides and sulfones, bayer-villeger reaction, bromination and iodation of aniline and phenol derivatives oxidative esterification, oxidation of pyridines and oxidation of secondary, allylic and benzyllic alcohols were carried out using 1,1,2,2-Tetrahydroperoxy-1,2-Diphenylethane as the potential solid oxidant which can be stored for several months without any loss in its activity. All of the procedures were accomplished via mild reaction conditions and the products were afforded in high yields and short reaction times.  相似文献   
28.
12- and 13-Membered diaza dioxa Schiff-base nickel(II) complexes were successfully prepared in a nanoscale microreactor by the template condensation of (1,8-diamino-3,6-dioxaoctane)nickel(II) complex with bifunctional diketones within the nanodimensional pores of zeolite Y. The host–guest nanocatalyst (HGN); ([Ni((R2[12]1,3-dieneN2O2)]2+-NaY, [Ni(R2[13]1,4-dieneN2O2)]2+-NaY; R = H, Me and Ph) is catalytically very efficient as compared to other neat complexes for oxidation of cyclohexene with molecular oxygen as oxidant in the absence of solvent at 70 °C, affording 2-cyclohexene-1-ol and 2-cyclohexene-1-one.  相似文献   
29.
An environmentally benign magnetic silica‐based nanocomposite (Fe3O4/SBA‐15) as a heterogeneous nanocatalyst was prepared and characterized using Fourier transform infrared and ultraviolet–visible diffuse reflectance spectroscopies, scanning electron microscopy, X‐ray diffraction, vibrating sample magnetometry and Brunauer–Emmett–Teller multilayer nitrogen adsorption. Its catalytic activity was investigated for the one‐pot multicomponent synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones starting from isatoic anhydride, ammonium acetate and various aldehydes under mild reaction conditions and easy work‐up procedure in refluxing ethanol with good yields. The nanocatalyst can be recovered easily and reused several times without significant loss of catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
30.
The autoignition and pyrolysis of two C5 ethers, methyl tert butyl ether (MTBE) and 2-methyltetrahydrofuran (2-MTHF), are investigated using the shock tube reactor. The experiments are carried out at pressures of 3.5 and 12 atm at temperatures above 1000 K with argon as a diluent gas. By means of direct laser absorption, carbon monoxide time histories and associated chemical kinetic timescales are also determined. It is observed that the competition between ignition and pyrolysis times depends on the temperature and equivalence ratio of the ignition mixture, such that there is a temperature above which pyrolysis predominates oxidative kinetics. This crossover temperature shifts toward higher temperatures for reactive systems with a fixed fuel concentration but higher oxygen content. The resulting experimental observations are also compared with predictions of existing chemical kinetic models from the literature. The results point to differences in chemical reactivity, such that in pyrolysis conditions, the reactivity of the cyclic ether, 2-MTHF, is generally higher than that of the aliphatic ether, MTBE. While agreement between experimental observations and model predictions is observed under certain conditions, significant variance between observations and predictions is observed under other conditions. With respect to prediction of the pyrolysis time used to capture the global kinetics of pyrolysis, it is observed that the relation of this time to the time needed to attain 90% of the equilibrium CO concentration varies greatly with the result that the models used in this work generally predict a faster initial formation of CO but a much slower approach to the equilibrium concentration. This is thought to arise from the slow transformation of intermediate CH2O and CH2CO to CO. The chemical kinetic models considered in this work are therefore not capable of predicting the CO time histories during pyrolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号