首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1591篇
  免费   63篇
  国内免费   6篇
化学   1240篇
晶体学   20篇
力学   16篇
数学   126篇
物理学   258篇
  2023年   9篇
  2022年   12篇
  2021年   15篇
  2020年   31篇
  2019年   30篇
  2018年   28篇
  2017年   10篇
  2016年   25篇
  2015年   44篇
  2014年   35篇
  2013年   83篇
  2012年   94篇
  2011年   119篇
  2010年   62篇
  2009年   71篇
  2008年   136篇
  2007年   120篇
  2006年   104篇
  2005年   75篇
  2004年   82篇
  2003年   74篇
  2002年   71篇
  2001年   32篇
  2000年   33篇
  1999年   11篇
  1998年   7篇
  1997年   6篇
  1996年   13篇
  1995年   7篇
  1993年   10篇
  1992年   19篇
  1991年   16篇
  1990年   6篇
  1989年   12篇
  1988年   11篇
  1986年   5篇
  1985年   5篇
  1984年   13篇
  1983年   12篇
  1982年   10篇
  1981年   11篇
  1979年   5篇
  1978年   14篇
  1977年   10篇
  1976年   8篇
  1975年   9篇
  1974年   8篇
  1973年   5篇
  1972年   4篇
  1970年   4篇
排序方式: 共有1660条查询结果,搜索用时 46 毫秒
61.
(Ss)-3-(p-Tolylsufinyl)-2-furaldimine was synthesized, and condensation of the chiral furaldimine with lithium ester enolates has been examined. The product distribution of the reaction is dependent upon reaction conditions and on the kind of the substituent placed on the esters. Disubstituted ester enolate resulted in the exclusive formation of (4R)-beta-lactam, while unsubstituted, tert-butyl ester enolate preferentially gave (3R)-beta-amino ester. With the monosubstituted ester enolates, the condensation afforded (4R)-beta-lactams and/or (3R)-beta-amino esters as major products. This method has been applied to an efficient route to chiral furyl beta-lactams.  相似文献   
62.
Size- (submicrometer-sized) and morphology- (spherical) controlled composite Gd-Eu oxalate particles were prepared in an emulsion liquid membrane (water-in-oil-in-water emulsion) system. The oxalate particles thus prepared were calcined in air to obtain Gd(2)O(3) : Eu(3+) phosphor particles and in sulfur atmosphere to obtain Gd(2)O(2)S : Eu(3+) phosphor particles. These submicrometer-sized spherical phosphor particles showed photoluminescence properties with emission peak at 614 nm for Gd(2)O(3) : Eu(3+) and 628 nm for Gd(2)O(2)S : Eu(3+).  相似文献   
63.
The kinetics of 82 reactions of benzhydrylium ions (Ar(2)CH(+)) with n-nucleophiles has been determined at 20 degrees C. Evaluation by the equation log k = s(N + E) delivered the reactivity parameters N and s for 15 n-nucleophiles (water, hydroxide, amines, etc.). All nucleophiles except water (s = 0.89) and (-)SCH(2)CO(2)(-) (s = 0.43) have closely similar slope parameters (0.52 < s < 0.71), indicating that the reactions of most n-nucleophiles approximately follow Ritchie's constant selectivity relationship (s = constant). The different slope parameter for water is recognized as the main reason for the deviations from the Ritchie relationship reported in 1986. Correlation analysis of the rate constants for the reactions of benzhydrylium ions with the n-nucleophiles (except H(2)O) on the basis of Ritchie's equation log k = N(+) + log k(0) yields a statistically validated set of N(+) parameters for Ritchie-type nucleophiles and log k(0) parameters for benzhydrylium ions. The N and s parameters of the n-nucleophiles derived from their reactions with benzhydrylium ions were combined with literature data for the reactions of these nucleophiles with other carbocations to yield electrophilicity parameters E for tritylium, tropylium, and xanthylium ions. While the E parameters for tropylium and xanthylium ions appear to be generally applicable, it is demonstrated that the E parameters of tritylium ions can be used to predict reactivities toward n-nucleophiles as well as hydride transfer rate constants but not rates for the reactions of tritylium ions with pi-nucleophiles. It is now possible to merge the large data sets determined by Ritchie and others with our kinetic data and present a nucleophilicity scale comprising n- (e.g., amines), pi- (e.g., alkenes and arenes), and sigma-nucleophiles (e.g., hydrides).  相似文献   
64.
65.
Two molecular dynamics (MD) simulations totaling 25 ns of simulation time of monomeric scytalone dehydratase (SD) were performed. The enzyme has a ligand-binding pocket containing a cone-shaped alpha+beta barrel, and the C-terminal region covers the binding pocket. Our simulations clarified the difference in protein dynamics and conformation between the liganded protein and the unliganded protein. The liganded protein held the ligand molecule tightly and the initial structure was maintained during the simulation. The unliganded protein, on the other hand, fluctuated dynamically and its structure changed largely from the initial structure. In the equilibrium state, the binding pocket was fully solvated by opening of the C-terminal region, and the protein dynamics was connected with hydration water molecules entry into and release from the binding pocket. In addition, the cooperative motions of the unliganded protein and the hydration water molecules produced the path through the protein interior for ligand binding.  相似文献   
66.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   
67.
A fast living radical polymerization of methyl methacrylate (MMA) proceeded with the (MMA)2? Cl/Ru(Ind)Cl(PPh3)2 initiating system in the presence of n‐Bu2NH as an additive [where (MMA)2? Cl is dimethyl 2‐chloro‐2,4,4‐trimethyl glutarate]. The polymerization reached 94% conversion in 5 h to give polymers with controlled number‐average molecular weights (Mn's) in direct proportion to the monomer conversion and narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) ≤ 1.2]. A poly(methyl methacrylate) with a high molecular weight (Mn ~ 105) and narrow MWD (Mw/Mn ≤ 1.2) was obtained with the system within 10 h. A similarly fast but slightly slower living radical polymerization was possible with n‐Bu3N, whereas n‐BuNH2 resulted in a very fast (93% conversion in 2.5 h) and uncontrolled polymerization. These added amines increased the catalytic activity through some interaction such as coordination to the ruthenium center. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 617–623, 2002; DOI 10.1002/pola.10148  相似文献   
68.
Activity of lysosomal enzymes, such as N-acetyl-beta-D-glucosaminidase (NAG), was assayed in exudate on a rat model of Bordetella pertussis vaccine pleurisy. Thiobarbituric acid (TBA)-reactive substances (TBA.R) and superoxide dismutase (SOD) activity were then monitored in the exudate on the acute phase response in this inflammatory model. Retention of the exudate in the pleural space increased rapidly after the challenge, and the exudate volume at 24 h reached about three times the volume at 6 h. The activity of SOD at 6 h was shown to be higher than that at 24 h after the challenge, thus showing negative correlations with TBA-R levels and exudate volume. The levels of TBA.R rapidly increased and reached maximum values at 24 h. It was concluded that the above three parameters correlated to the acute phase response in this inflammatory model.  相似文献   
69.
[reaction: see text] Allylzirconium reagents are effective for radical allylation of alpha-halo carbonyl compounds. The key steps would be homolytic cleavage of the zirconium-carbon bond and halogen abstraction by the resulting Cp(2)ZrCl(III). Zirconocene-olefin complex can be also utilized for the allylation of alpha-halo compounds.  相似文献   
70.
The binding of a dimeric form of the 2-amino-1,8-naphthyridine derivative (naphthyridine dimer) to a human telomeric sequence, TTAGGG, was investigated by UV melting, CD spectra, and CSI-MS measurements. Both the 9-mer d(TTAGGGTTA) and the 15-mer d(TTAGGGTTAGGGTTA) showed apparent melting temperatures (T(m)) of 45.6 and 63.6 degrees C, respectively, in the presence of naphthyridine dimer (30 microM) in sodium cacodylate buffer (50 mM, pH 7.0) containing 100 mM NaCl. The CD spectra at 235 and 255 nm of the 9-mer increased in intensity accompanied with strong induced CDs at 285 and 340 nm upon complex formation with naphthyridine dimer. UV titration of the binding of naphthyridine dimer to the 9-mer at 320 nm showed a hypochromism of the spectra. A Scatchard plot of the data showed the presence of multiple binding sites with different association constants. Cold spray ionization mass spectrometry of the complex between naphthyridine dimer and the 9-mer clearly showed that one to three molecules of the ligand bound to the dimer duplex of the 9-mer. Telomeric repeat elongation assay showed that the binding of naphthyridine dimer to the telomeric sequence inhibits the elongation of the sequence by telomerase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号