首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   14篇
  国内免费   4篇
化学   311篇
晶体学   2篇
力学   2篇
数学   2篇
物理学   66篇
  2023年   3篇
  2022年   9篇
  2021年   10篇
  2020年   17篇
  2019年   9篇
  2018年   13篇
  2017年   14篇
  2016年   10篇
  2015年   13篇
  2014年   11篇
  2013年   25篇
  2012年   23篇
  2011年   23篇
  2010年   24篇
  2009年   22篇
  2008年   30篇
  2007年   15篇
  2006年   11篇
  2005年   8篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  1999年   1篇
  1998年   7篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   7篇
  1983年   1篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1977年   5篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1947年   1篇
排序方式: 共有383条查询结果,搜索用时 15 毫秒
141.
The high demand for long-lasting and portable energy storage devices with enhanced energy and power densities has attracted researcher's interest globally. The three-dimensional (3D) nickel foam is a promising electrode material for storing energy in various devices because they possess large surface area, are very conductive and enjoy a continuous permeable 3D system. This article provides a review and detailed information on the uses of 3D nickel foam-based electrodes with metal oxides/hydroxides of different morphologies for high-performance pseudocapacitors. We assess the limitations and future prospects of 3D nickel foam-based electrodes with metal oxides/hydroxides for industrial application towards enhancing pseudocapacitors' energy storage capability.  相似文献   
142.
TiO2 doped WO3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH4)2WO4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO2 doped WO3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO2 doping concentration on structural, electrical and optical properties of TiO2 doped WO3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy (Eg) were estimated. The films with 38% TiO2 doping in WO3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.  相似文献   
143.
Nanocrystalline titanium dioxide (TiO2) thin films have been prepared using titanium(IV) isopropoxide as a precursor onto the glass and fluorine doped tin oxide coated glass substrates by chemical vapour deposition technique at 400 °C substrate temperature. X-ray diffraction study confirms the polycrystalline nature of TiO2 with anatase phase having tetragonal crystal structure. The films are 975 nm thick and transparent having transmittance grater than 80%. Atomic force microscopy (AFM) images reveal the nanocrystalline morphology with grain size of 200 nm. The film shows a sharp absorption edge near 350 nm. Photoelectrochemical study shows that TiO2 thin film sensitized with Brown Orange dye is found to exhibit relatively maximum Isc and Voc among the studied dyes. The values of fill factor (FF) and efficiency (η) for the dye-sensitized solar cell (Brown Orange dye-sensitized TiO2) are 0.54 and 0.17%, respectively. Such films would serve as better prospects for dye-sensitized solar cells.  相似文献   
144.
Hyperphosphorylation at tyrosine is commonly observed in tumor proteomes and, hence, specific phosphoproteins or phosphopeptides could serve as markers useful for cancer diagnostics and therapeutics. The analysis of such targets is, however, a challenging task, because of their commonly low abundance and the lack of robust and effective preconcentration techniques. As a robust alternative to the commonly used immunoaffinity techniques that rely on phosphotyrosine(pTyr)-specific antibodies, we have developed an epitope-imprinting strategy that leads to a synthetic pTyr-selective imprinted polymer receptor. The binding site incorporates two monourea ligands placed by preorganization around a pTyr dianion template. The tight binding site displayed good binding affinities for the pTyr template, in the range of that observed for corresponding antibodies, and a clear preference for pTyr over phosphoserine (pSer). In further analogy to the antibodies, the imprinted polymer was capable of capturing short tyrosine phosphorylated peptides in the presence of an excess of their non-phosphorylated counterparts or peptides phosphorylated at serine.  相似文献   
145.
We report on the synthesis of cobalt dihydroxide [Co(OH)2] nanorods and their deposition on a 3-dimensional graphene network via chemical bath deposition. The structural characterization reveals deposited Co(OH)2 to consist of flower-like nanorods on a 3-dimensional graphene foam. The nanocomposite was used for glucose sensing by electrocatalytic oxidation of glucose in 1 M KOH solution. Cyclic voltammetry and amperometric studies revealed a high sensitivity for glucose (3.69 mA mM?1 cm?2) and a 16 nM detection limit. The nanocomposite offers a large effective surface (11.4 cm2) and is very selective for glucose over potentially interfering materials such as dopamine, ascorbic acid, lactose, fructose and urea, not the least due to a relatively low working potential of 0.6 V (vs. Ag/AgCl). The high sensitivity, low detection limit and very good selectivity of free-standing nanocomposite electrodes are attributed to the synergistic effect of (a) the good electrocatalytic activity of the NRs, and (b) the large surface area with high conductivity offered by the 3D graphene foam.
Graphical Abstract Cobalt hydroxide [Co(OH)2] nanorods were deposited on three dimensional graphene (3DG) by a chemical bath deposition method, and the resulting material was used as an electrode for non-enzymatic and specific sensing of glucose in 1 M KOH solution.
  相似文献   
146.
The enantiomers of 5-hydroxy-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-cyclopent-2-en-1-one, a novel anticancer agent, were separated by derivatisation with caronaldehyde, separation of the resulting diastereoisomers of the corresponding esters by silica gel column chromatography and regeneration of alcohols (S)-5-hydroxy-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-cyclopent-2-en-1-one and (R)-5-hydroxy-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-cyclopent-2-en-1-one under aqueous conditions. The absolute configuration of the enantiomers was determined by 1H NMR studies of the corresponding Mosher esters. Alternatively, the enantiomers were separated by preparative HPLC to collect the (S)- and (R)-5-hydroxy-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-cyclopent-2-en-1-ones with high purity which was comparable with that obtained by the chemical method. The details of these methods have been presented herein.  相似文献   
147.
Research on Chemical Intermediates - A dry rind of Aegle marmelos (bael) fruit ash as a synergetic alternative material to an expensive, toxic and corrosive catalysts for the synthesis of...  相似文献   
148.
149.
We study a model of freely cooling inelastic granular gas in one dimension, with a restitution coefficient which approaches the elastic limit below a relative velocity scale delta. While at early times (tdelta;{-1}) it exhibits a new fluctuation-dominated phase ordering state. We find distinct scaling behavior for the (i) density distribution function, (ii) occupied and empty gap distribution functions, (iii) the density structure function, and (iv) the velocity structure function, as compared to the completely inelastic sticky gas. The spatial structure functions (iii) and (iv) violate the Porod law. Within a mean-field approximation, the exponents describing the structure functions are related to those describing the spatial gap distribution functions.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号