首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   848篇
  免费   33篇
  国内免费   4篇
化学   703篇
晶体学   8篇
力学   12篇
数学   33篇
物理学   129篇
  2023年   3篇
  2022年   12篇
  2021年   20篇
  2020年   13篇
  2019年   21篇
  2018年   9篇
  2017年   6篇
  2016年   29篇
  2015年   31篇
  2014年   22篇
  2013年   48篇
  2012年   57篇
  2011年   72篇
  2010年   50篇
  2009年   37篇
  2008年   65篇
  2007年   52篇
  2006年   47篇
  2005年   33篇
  2004年   45篇
  2003年   30篇
  2002年   33篇
  2001年   20篇
  2000年   13篇
  1999年   17篇
  1998年   9篇
  1997年   8篇
  1996年   11篇
  1995年   6篇
  1994年   5篇
  1993年   10篇
  1992年   5篇
  1991年   5篇
  1990年   6篇
  1989年   1篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有885条查询结果,搜索用时 15 毫秒
81.
Gold nanoparticles (AuNPs) were assembled with high density onto multi-walled carbon nanotubes, which were functionalized with zwitterionic poly(imidazoliumsulfonate). The AuNP/zwitterionic CNT hybrids exhibited decent electrocatalytic activity in oxygen reduction reaction as the AuNP-based catalysts.  相似文献   
82.
Anilines react with epoxides in dioxane at 180°C in the presence of a catalytic amount of a ruthenium catalyst along with tin(II) chloride to afford 2-substituted indoles in moderate to good yields.  相似文献   
83.
84.
85.
Detection of pathogenic bacteria that pose a great risk to human health requires a rapid, convenient, reliable, and sensitive detection method. In this study, we developed a selective filtration method using monoclonal antibody (MAb)–magnetic nanoparticle (MNP) nanocomposites for the rapid and sensitive colorimetric detection of Salmonella typhimurium. The method contains two key steps: the immunomagnetic separation of the bacteria using MAb–MNP nanocomposites and the filtration of the nanocomposite-bound bacteria. Color signals from the nanocomposites remaining on the membrane were measured, which reflected the amount of bacteria in test samples. Immunomagnetic capture efficiencies of 8 to 90 % for various concentrations of the pathogen (2?×?104–2?×?101 cells) were obtained. After optimization of the method, 2?×?101 cells of S. typhimurium in pure culture solution was detectable as well as in artificially inoculated vegetables (100 cells/g). The method was confirmed to be highly specific to S. typhimurium without cross-reaction to other pathogenic bacteria and could be concluded within 45 min, yielding results in a shorter or similar time period as compared with recently reported antibody immobilized on magnetic-particle-based methods. This study also demonstrated direct application of MAb–MNP nanocomposites without a dissociation step of bacteria from magnetic beads in colorimetric assays in practice.  相似文献   
86.
Getting suitable crystals for single‐crystal X‐ray crystallographic analysis still remains an art. Obtaining single crystals of metal–organic frameworks (MOFs) containing organic polymers poses even greater challenges. Here we demonstrate the formation of a syndiotactic organic polymer ligand inside a MOF by quantitative [2+2] photopolymerization reaction in a single‐crystal‐to‐single‐crystal manner. The spacer ligands with trans,trans,trans‐conformation in the pillared‐layer MOF with guest water molecules in the channels, undergo pedal motion to trans,cis,trans‐conformation prior to [2+2] photo‐cycloaddition reaction and yield single crystals of MOF containing two‐dimensional coordination polymers fused with the organic polymer ligands. We also show that the organic polymer in the single crystals can be depolymerized reversibly by cleaving the cyclobutane rings upon heating. These MOFs also show interesting photoluminescent properties and sensing of small organic molecules.  相似文献   
87.
Gold nanorod (GNR)–photosensitizer (PS) complex was prepared using anionic PS (sodium salt of purpurin‐18) and cationic poly(allylamine hydrochloride) by layer‐by‐layer method, and was characterized by transmission electron microscopy, UV‐vis spectroscopy, and zeta potential. The GNR–PS complex is a promising agent for synergistic (photothermal and photodynamic) therapy (PTT/PDT), in which PTT generates heat as well as operates the PS release which maximize the following PDT activity. The combined dual therapy, PTT followed by PDT, exhibits a significantly higher photocytotoxicity result based on synergistic effect of hyperthermia from PTT as well as singlet oxygen photogeneration from PDT.  相似文献   
88.
Recent studies have shown that circulating microRNAs are a potential biomarker in various types of malignancies. The aim of this study was to investigate the feasibility of using serum exosomal microRNAs as novel serological biomarkers for hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). We measured the serum exosomal microRNAs and serum circulating microRNAs in patients with CHB (n=20), liver cirrhosis (LC) (n=20) and HCC (n=20). Serum exosomal microRNA was extracted from 500 μl of serum using an Exosome RNA Isolation kit. The expression levels of microRNAs were quantified by real-time PCR. The expression levels of selected microRNAs were normalized to Caenorhabditis elegans microRNA (Cel-miR-39). The serum levels of exosomal miR-18a, miR-221, miR-222 and miR-224 were significantly higher in patients with HCC than those with CHB or LC (P<0.05). Further, the serum levels of exosomal miR-101, miR-106b, miR-122 and miR-195 were lower in patients with HCC than in patients with CHB (P=0.014, P<0.001, P<0.001 and P<0.001, respectively). There was no significant difference in the levels of miR-21 and miR-93 among the three groups. Additionally, the serum levels of circulating microRNAs showed a smaller difference between HCC and either CHB or LC. This study suggests that serum exosomal microRNAs may be used as novel serological biomarkers for HCC.  相似文献   
89.
为了同时提取和检测沉积物中的雌性激素化合物对壬基苯酚(NP)、对壬基苯酚一乙氧醚(NP1EO)和对壬基苯酚二乙氧醚(NP2EO),对加速溶剂提取体系的各种条件和对壬基苯酚类化合物的硅烷基化反应条件等进行了优化。在丙酮和丙酮-二氯甲烷混合液(丙酮含量≥60%)介质中,这些化合物的硅烷基化反应很快达到反应终点。加速溶剂提取体系的最佳提取条件是120℃、8.4MPa、两次循环提取;最佳提取溶剂是二氯甲烷。与索氏提取和酸化悬浮液液提取比较,明显提高了提取率、重现性和准确性。平均添标回收率在89.3%~95.7%之间,相对标准偏差为2.3%~13.4%。本方法对壬基苯酚、对壬基苯酚一乙氧醚和对壬基苯酚二乙氧醚化合物的检出限分别为10、30、35ng/gdw(干重)。  相似文献   
90.
This study was undertaken to investigate whether an additional column clean-up procedure can affect the accuracy of an analytical method developed for the determination of imidacloprid residues in Chinese cabbage. Thereafter, the residue levels and the degradation rates of imidacloprid were investigated in experimental Chinese cabbage plots after treatment with two different commercial formulations: emulsifiable concentrate (EC) and wettable powder (WP). The analyte was determined using high-performance liquid chromatography-ultraviolet detection (HPLC-UVD) and confirmed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) in the select ion-monitoring mode. The mean recoveries ranged from 75.34 to 98.00% and 96.95 to 100.97%, with relative standard deviations of 0.86-4.14 and 1.22-3.52%, in samples treated with and without additional column clean-up procedures, respectively. The minimum detectable amount of imidacloprid was 4 ng, while the limits of detection and quantitation were 0.2 and 0.5 ppm, respectively. The degradation of pesticide was monitored throughout a period of 13 days under greenhouse conditions. Although the behaviors of the EC and WP formulations appear to be similar, the absolute residue levels obtained with EC and WP treatments differed slightly. When imidacloprid formulations were applied (as foliar treatments) according to the recommended rate, the final residues (13 days post-treatment) in Chinese cabbage were much lower than the maximum residue limit (MRL = 3.5 ppm) established by the Korean Food and Drug Administration. Taken together, our study suggests that the analysis of imidacloprid can be performed without an additional column clean-up procedure, and the decline curve and the residue levels in Chinese cabbage could change if the same active ingredient is used in different formulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号