首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   610篇
  免费   19篇
  国内免费   1篇
化学   473篇
晶体学   3篇
力学   9篇
数学   22篇
物理学   123篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   2篇
  2017年   9篇
  2016年   8篇
  2015年   15篇
  2014年   13篇
  2013年   28篇
  2012年   34篇
  2011年   24篇
  2010年   27篇
  2009年   21篇
  2008年   27篇
  2007年   26篇
  2006年   39篇
  2005年   36篇
  2004年   22篇
  2003年   22篇
  2002年   23篇
  2001年   17篇
  2000年   20篇
  1999年   17篇
  1998年   6篇
  1997年   6篇
  1996年   7篇
  1995年   9篇
  1994年   9篇
  1993年   10篇
  1992年   10篇
  1991年   6篇
  1990年   11篇
  1989年   11篇
  1988年   10篇
  1987年   10篇
  1986年   9篇
  1985年   19篇
  1984年   5篇
  1983年   4篇
  1981年   6篇
  1979年   7篇
  1978年   7篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有630条查询结果,搜索用时 15 毫秒
31.
Molecular interactions between lipid bilayers (liposomes) and chondroitin sulfate C (CS), a water soluble polymer, have been investigated in terms of zeta-potential, particle size, microscopic-viscosity, microscopic-polarity of liposomes and permeability of calcein. Microscopic morphology is dramatically changed by the addition of CS to the positively charged liposomes (Pos.L), while it is not changed by the addition to uncharged liposomes (Unc.L) or negatively charged liposomes (Neg.L). The absolute value of the particle size of Pos.L increases with the addition of CS, while the zeta- potential of Pos.L decreases. Permeability of Pos.L decreases with an increase in the concentration of CS. Phase transition temperature of Pos.L is changed after the addition of CS. These values, however, are not changed for the other liposomes by the addition of CS. The results of gel filtration chromatography show that CS is absorbed on the Pos.L surface. Microscopic viscosity is also increased by the addition of CS to Pos.L due to the adsorption of CS.  相似文献   
32.
A series of the octapalladium chains supported by meso-Ph2PCH2P(Ph)CH2P(Ph)CH2PPh2 (meso-dpmppm) ligands, [Pd8(meso-dpmppm)4(L)2](BF4)4 (L=none ( 1 ), solvents: CH3CN ( 2 a ), dmf ( 2 b ), dmso ( 2 c ), RN≡C: R=Xyl ( 3 a ), Mes ( 3 b ), Dip ( 3 c ), tBu ( 3 d ), Cy ( 3 e ), CH3(CH2)7 ( 3 f ), CH3(CH2)11 ( 3 g ), CH3(CH2)17 ( 3 h )) and [Pd8(meso-dpmppm)4(X)2](BF4)2 (X=Cl ( 4 a ), N3 ( 4 b ), CN ( 4 c ), SCN ( 4 d )), were synthesized by using 2 a as a stable good precursor, and characterized by spectroscopic (IR, 1H and 31P NMR, UV-vis-NIR, ESI-MS) measurements and X-ray crystallographic analyses (for 1 , 2 a , b , 3 a , b , e , f , 4 a – d ). On the basis of DFT calculations on the X-ray determined structure of 2 b ( [2b-Pd8]4+ ) and the optimized models [Pd8(meso-Ph2PCH2P(H)CH2P(H)CH2PH2)4(CH3CN)2]4+ ( [Pd8Ph8]4+ ) and [Pd8(meso-H2PCH2P(H)CH2P(H)CH2PH2)4(CH3CN)2]4+ ( [Pd8H8]4+ ), with and without empirically calculating dispersion force stabilization energy (B3LYP-D3, B3LYP), the formation energy between the two Pd4 fragments is assumed to involve mainly noncovalent interactions (ca. −70 kcal/mol) with four sets of interligand C−H/π interactions and Pd⋅⋅⋅Pd metallophilic one, while electron shared covalent interactions are almost canceled out within the Pd8 chain. All the compounds isolated are stable in solution and exhibit characteristic absorption at ∼900 nm, which is assignable to a spin allowed HOMO to LUMO transition, and shows temperature dependent intensity change with variable absorption coefficients presumably due to coupling with some thermal vibrations. The structures and electronic states of the Pd8 chains are found finely tunable by varying the terminal capping ligands. In particular, theoretical calculations elucidated that the HOMO-LUMO energy gap is systematically related to the central Pd−Pd distance (2.7319(6)–2.7575(6) Å) by two ways with neutral ligands L ( 1 , 2 , 3 ) and with anionic ligands X ( 4 ), which are reflected on the NIR absorption energy of 867–954 nm. The isocyanide terminated Pd8 complexes ( 3 ) further reacted with excess of RNC (6 eq) to afford the Pd4 complexes, [Pd4(meso-dpmppm)2(RNC)2](BF4)2 ( 13 ), and the cyclic voltammograms of 2 a (L=CH3CN), 3 , and 13 (R=Xyl, Mes, tBu, Cy) demonstrated wide range redox behaviors from 2{Pd4}4+ to 2{Pd4}0 through 2{Pd4}2+↔{Pd8}4+, {Pd8}3+, and {Pd8}2+ strings. The oxidized complexes, [Pd4(meso-dpmppm)2(RNC)3](BF4)4 ( 16 ), were characterized by X-ray analyses, and the two-electron reduced chain of [Pd8(meso-dpmppm)4](BF4)2 ( 7 ) was analyzed by spectroscopic and electrochemical techniques and DFT calculations. Reactions of 2 a with 1 equiv. of aromatic linear bisisocyanide (BI) in CH2Cl2 deposited insoluble coordination polymers, {[Pd8(meso-dpmppm)4(BI)](BF4)4}n ( 5 ), and interestingly, they were soluble in acetonitrile, 31P{1H} and 1H DOSY NMR spectra as well as SAXS curves suggesting that the coordination polymers may exist in acetonitrile as dynamically 1D self-assembled coordination polymers comprising ca. 50 units of the Pd8 rod averaged within the timescale.  相似文献   
33.
34.
We report a cyclic sample pooling technique devised in two‐dimensional liquid chromatography–electrospray ionization mass spectrometry (LC‐ESI‐MS) shotgun proteomics that renders deeper proteome coverage; we combined low pH reversed‐phase (RP) LC in trifluoroacetic acid in the first dimension, followed by cyclic sample pooling of the eluate and low‐pH RP‐LC in formic acid in the second dimension. The new protocol has a significantly higher resolving power suitable for LC‐ESI‐MS/MS shotgun proteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
35.
A new polymer blend composed of a hydrogenated ring‐opening polymer (HROP) with an ester group and hydroxyl functionalized polystyrene (HFP) produced the excellent transparent materials which enabled a precise birefringence control in keeping with the other physical properties for optical film use. The blend with a composition from 0.28 to 0.35 for the HFP weight fraction showed an extraordinary wavelength dispersion, transmitting through a zero birefringence point at the critical fraction of 0.45, while each polymer showed an ordinary wavelength dispersion. The observed excellent transparency even above those of the glass transition temperature was attributed to a depressed phase separation that resulted from strong hydrogen bond between the ester and hydroxyl groups. An IR analysis of the film demonstrated a remarkable red‐shift in the carbonyl peak with an increase of the hydroxylated polystyrene content, indicating a strong hydrogen bond between those groups. This new polymer blend provides a useful design to achieve practical demands for film use, both optical and mechanical under the fabrication conditions using the melt extrusion technique. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3132–3143  相似文献   
36.
RAFT polymerization of styrene (St) in the presence of 5,10,15,20‐tetrakis(pentafluorophenyl)porphyrin (TFPP) was conducted using 4‐cyano‐4‐(thiobenzoyl)thiopentanoic acid as a chain‐transfer agent and azobisisobutyronitrile as an initiator at 60 °C. The resulting polymer exhibited a chlorin‐like UV‐vis spectrum, which indicated that the polymer possessed a reduced TFPP structure. Furthermore, an SEC trace recorded using UV‐vis detector (λ = 410 nm), which selectively detected the TFPP‐incorporated polymer, shifted toward higher molecular mass as the polymerization progressed. This evidence indicated that TFPP acted as a vinylene‐type monomer, such as maleimide, to form a copolymer, namely, poly(St‐co‐TFPP). The mole fraction of TFPP units was estimated to be 0.74 × 10?3, which was close to that in the feed (1 × 10?3). Chain extension of poly(St‐co‐TFPP) with polyethylene glycol monomethyl ether acrylate (PEGA) was performed to afford the amphiphilic block copolymer poly(St‐co‐TFPP)‐b‐poly(PEGA). The degrees of polymerization of St and PEGA were determined to be 64 and 75, respectively. Poly(St‐co‐TFPP)‐b‐poly(PEGA) formed micelles following dialysis. The median diameter of the micelles in solution was determined to be 16 nm by DLS. The photocytotoxicity of the micelle solution was evaluated in a human glioblastoma cell line (U251) and an N‐methyl‐N'‐nitro‐N‐nitrosoguanidine‐induced mutant of a rat murine RGM‐1 gastric carcinoma mucosal cell line (RGK‐1). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3395–3403  相似文献   
37.
We study symmetric hyperbolic systems with memory-type dissipation and investigate their dissipative structures. We treat two cases: memory-type diffusion and memory-type relaxation, and observe that the dissipative structures of these two cases are essentially different. Namely, we show that the dissipative structure of the system with memory-type diffusion is of the standard type, while that of the system with memory-type relaxation is of the regularity-loss type.  相似文献   
38.
39.
40.
Three CF3‐substituted methyl methacrylates (MMAs), 2,2,2‐trifluoroethyl methacrylate (TFEMA), 1,1,1,3,3,3‐hexafluoroisopropyl methacrylate (HFIPMA) and nonafluoro‐tert‐butyl methacrylate (NFTBMA), were polymerized by conventional radical polymerization to give oxygen‐permeable polymers for application in pressure‐sensitive paint (PSP). The radical copolymerizations of styrene with TFEMA, HFIPMA, or NFTBMA were carried out to examine the effect of CF3 groups on the polymerizability. The e values increased in the order of MMA (0.40) < TFEMA (0.76) < HFIPMA (1.19) < NFTBMA (1.31). The homopolymers of TFEMA, HFIPMA and NFTBMA (PTFEMA, PHFIPMA, and PNFTBM, respectively) were examined as polymers for use in PSP using 5,10,15,20‐tetrakis(pentafluorophenyl)porphinato platinum(II) (PtTFPP). The PSP consisting of PNFTBMA and PtTFPP exerted very high pressure sensitivity and very low temperature sensitivity. In the absence of oxygen, the temperature sensitivity decreased in the order of PTFEMA > PHFIPMA > PNFTBMA = PMMA, which corresponds to the order of glass transition temperatures (Tg). However, the activation energies of the overall process of the luminescence quenching by oxygen were found to be 16.8 (PMMA), 13.0 (PTFEMA), 6.8 (PHFIPMA), and 4.3 kJ mol?1 (PNFTBMA). Therefore, the low temperature sensitivity of PNFTBMA was attributed to its high degree of substitution with CF3 groups and to its relatively high Tg value. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 963–972  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号