首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   0篇
  国内免费   1篇
化学   212篇
晶体学   1篇
力学   3篇
数学   3篇
物理学   41篇
  2023年   3篇
  2021年   2篇
  2020年   6篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   7篇
  2014年   8篇
  2013年   11篇
  2012年   12篇
  2011年   15篇
  2010年   12篇
  2009年   15篇
  2008年   13篇
  2007年   10篇
  2006年   15篇
  2005年   13篇
  2004年   11篇
  2003年   10篇
  2002年   3篇
  2001年   10篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   5篇
  1977年   3篇
  1976年   4篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1967年   2篇
排序方式: 共有260条查询结果,搜索用时 0 毫秒
111.
Probe electrospray ionization (PESI) is a recently developed ESI-based ionization technique which generates electrospray from the tip of a solid needle. In this study, we have applied PESI interfaced with a time of flight mass spectrometer (TOF-MS) for direct profiling of phytochemicals in a section of a tulip bulb in different regions, including basal plate, outer and inner rims of scale, flower bud and foliage leaves. Different parts of tulip petals and leaves have also been investigated. Carbohydrates, amino acids and other phytochemicals were detected. A series of in vivo PESI-MS experiments were carried out on the second outermost scales of four living tulip bulbs to monitoring the change of carbohydrate content during the first week of initial growth. The breakdown of carbohydrates was observed which was in accordance with previous reports achieved by other techniques. This study has indicated that PESI-MS can be used for rapid and direct analysis of phytochemicals in living biological systems with advantages of low sample consumption and little sample preparation. Therefore, PESI-MS can be a new choice for direct analysis/profiling of bioactive compounds or monitoring metabolic changes in living biological systems.  相似文献   
112.
Polyurethanes with allyl side chains were synthesized by the simultaneous acid‐catalyzed reaction of dialdehydes ( 1 ), alkylene N,N′‐bis(trimethylsilyl) carbamates ( 4 ), and allyltrimethylsilane ( 5 ). When 5 was added to a mixture of 1 , 4 , and the catalyst, a low molecular weight polymer was formed, as well as a large amount of an insoluble gel. However, when a mixture of 1 , 4 , and 5 was added to the catalyst, the formation of gel was depressed, and the desired polyurethanes, consisting of 1 , 4 , and 5 in a molar ratio of 1/1/2, were obtained in good yields. This polyurethane synthesis is unusual in that it concurrently constructs both the polymer backbone and the functional side chains from three starting compounds. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1236–1242, 2002  相似文献   
113.
Variations in the electronic structure and structural distortion in multiferroic DyMnO(3) were probed by synchrotron x-ray diffraction, lifetime-broadening-suppressed x-ray absorption spectroscopy (XAS), and ab initio electronic structure calculations. The refined x-ray diffraction data enabled an observation of a diminished local Jahn-Teller distortion of Mn sites within MnO(6) octahedra in DyMnO(3) on applying the hydrostatic pressure. The intensity of the white line in Mn K-edge x-ray absorption spectra of DyMnO(3) progressively increased with the increasing pressure. With the increasing hydrostatic pressure, the absorption threshold of an Mn K-edge spectra of DyMnO(3) shifted toward a greater energy, whereas the pre-edge line slightly shifted to a smaller energy. We provide the spectral evidence for the pressure-induced bandwidth broadening for manganites. The intensity enhancement of the white line in Mn K-edge spectra is attributed to a diminished Jahn-Teller distortion of MnO(6) octahedra in compressed DyMnO(3). A comparison of the pressure-dependent XAS spectra with the ab initio electronic structure calculations and full calculations of multiple scattering using the code FDMNES shows the satisfactory agreement between experimental and calculated Mn K-edge spectra.  相似文献   
114.
    
Electrospray droplet impact (EDI)/secondary ion mass spectrometry (SIMS) is a new desorption/ionization technique for mass spectrometry in which highly charged water clusters produced from the atmospheric‐pressure electrospray are accelerated in vacuum by several kV and impact the sample deposited on the metal substrate. In this study, several industrial synthetic polymers, e.g. polystyrene (PS) and polyethylene glycol (PEG) were analyzed by EDI/SIMS mass spectrometry. For higher molecular weight analytes, e.g. PS4000 and PEG4600, EDI/SIMS mass spectra could be obtained when cationization salts are added. For the polymers of lower molecular weights, e.g. PEG300 and PEG600, they could be readily detected as protonated ions without the addition of cationization agents. Anionized PS was also observed in the negative ion mode of operation when acetic acid was added to the charged droplet. Compared to matrix‐assisted laser desorption/ionization (MALDI), ion signal distribution with lower background signals could be obtained particularly for the low‐molecular weight polymers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
115.
    
Although being an atmospheric pressure ion source, electrospray ionization (ESI) has rarely been used directly for ambient imaging mass spectrometry because the sample has to be introduced as liquid solution through the capillary. Instead of capillary, probe electrospray ionization (PESI), which has been developed recently, uses a solid needle as the sampling probe, as well as the electrospray emitter, and has been applied not only for liquid solutions but also for the direct sampling on wet samples. Biological tissues are composed of cells that contain 70–90% water, and when the surface is probed by the needle tip, the biological fluid adhering to the needle can be electrosprayed directly or assisted by additional solvent added onto the needle surface. Here, we demonstrate ambient imaging mass spectrometry of mouse brain section using PESI, incorporated with an auxiliary heated capillary sprayer. The solvent vapor generated from the sprayer condensed on the needle tip, re‐dissolving the adhered sample, and at the same time, providing an indirect means for needle cleaning. The histological sections were prepared by fixation using paraformaldehyde, and the spatial analysis was automated by maintaining an equal sampling depth into the sample in addition to raster scan. Phospholipids and galactosylceramides were readily detected from the mouse brain section in the positive ion mode, and were mapped with 60 µm lateral resolution to form mass spectrometric images. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
116.
    
Recently, we have developed probe electrospray ionization (PESI) that uses a solid needle. In this system, the probe needle moves up and down along the vertical axis by a motor-driven system. At the highest position of the probe needle, electrospray is generated by applying a high voltage. In this study, we applied PESI directly to biological samples such as urine, mouse brain, mouse liver, salmon egg, and fruits (orange, banana, etc.). Strong ion signals for almost all the samples were obtained. The amount of liquid sample picked up by the needle is as small as pL or less, making PESI a promising non-invasive technique for detecting biomolecules in living systems such as cells. Therefore, PESI may be useful as a versatile and ready-to-use semi-online analytical tool in the fields of medicine, pharmaceuticals, agriculture, food science, etc.  相似文献   
117.
    
Electrospray droplet impact (EDI)/secondary ion mass spectrometry (SIMS) is a new desorption/ionization technique for mass spectrometry in which highly charged water clusters produced from atmospheric‐pressure electrospray are accelerated in vacuum by several kV and impact on the sample deposited on the metal substrate. In this study, we applied EDI/SIMS directly to fruits, such as bananas, strawberries, grapes and apples. The major components in the fruits – fructose, glucose, sucrose and organic acids – could be observed with strong signal intensities. EDI/SIMS was also applied to the analysis of different regions of strawberries and apples. Compared with matrix‐assisted laser desorption/ionization (MALDI), ion signals with lower background signals could be obtained, particularly for the low molecular weight analytes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
118.
    
A new type of cluster secondary ion mass spectrometry (SIMS), named electrospray droplet impact (EDI), has been developed in our laboratory. In general, rather strong negative ions as well as positive ions can be generated by EDI compared with conventional SIMS. In this work, various aspects of ion formation in EDI are investigated. The Brønsted bases (proton acceptor) and acids (proton donor) mixed in the analyte samples enhanced the signal intensities of deprotonated molecules (negative ions) and protonated molecules (positive ions), respectively, for analytes. This suggests the occurrence of heterogeneous proton transfer reactions (i.e. M + M′ → [M+H]+ + [M′? H]?) in the shockwave‐heated selvedge of the colliding interface between the water droplet and the solid sample deposited on the metal substrate. EDI‐SIMS shows a remarkable tolerance to the large excess of salts present in samples. The mechanism for desorption/ionization in EDI is much simpler than those for MALDI and SIMS because only very thin sample layers take part in the shockwave‐heated selvedge and complicated higher‐order reactions are largely suppressed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
119.
120.
    
We have demonstrated that, with simple pH adjustment, volatile drugs such as methamphetamine, amphetamine, 3,4‐methylenedioxymethamphetamine (MDMA), ketamine, and valproic acid could be analyzed rapidly from raw biofluid samples (e.g. urine and serum) without dilution, or extraction, using atmospheric pressure ionization. The ion source was a variant type of atmospheric pressure chemical ionization (APCI) that used a dielectric barrier discharge (DBD) to generate the metastable helium gas and reagent ions. The sample solution was loaded in a disposable glass pipette, and the volatile compounds were purged by nitrogen gas to be reacted with the metastable helium gas. The electrodes of the DBD were arranged in such a way that the generated glow discharge was confined within the discharge tube and was not exposed to the analytes. A needle held at 100–500 V was placed between the ion‐sampling orifice and the discharge tube to guide the analyte ions into the mass spectrometer. After pH adjustment of the biofluid sample, the amphiphilic drugs were in the form of a water‐insoluble oil, which could be concentrated on the liquid surface. By gentle heating of the sample to increase the evaporation rate, rapid and sensitive detection of these drugs in raw urine and serum samples could be achieved in less than 2 min for each sample. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号