首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   0篇
化学   69篇
物理学   30篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   10篇
  2014年   8篇
  2013年   7篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   2篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1984年   1篇
排序方式: 共有99条查询结果,搜索用时 0 毫秒
51.
52.
Charge separation in “soft” nanoparticles composed of water molecules, as well as sodium and chlorine ions, is studied by computer simulation. The detailed model of intermolecular interactions that includes, in addition to Coulomb, exchange, and dispersion forces, many-particle polarization and covalent interactions, as well as the effect due to the transfer of excess ion charges and influence of ion field on molecular interactions, is constructed. Model potentials are calibrated using experimental data on the free energy and enthalpy of the addition of vapor molecules to the hydration shells of ions, as well as the data of quantum-chemical calculations for stable cluster configurations and the vibration frequency of interionic bonds. The allowance for many-particle interactions makes it possible to improve the agreement between experimental and quantum-chemical data by more than an order of magnitude. The disregard for many-particle interactions leads to the significant overestimation of cluster stability.  相似文献   
53.
Self-organization into domains with spontaneous polarization is revealed for an ensemble of water molecules occurring in a contact layer on a defectless polarizable crystal surface. These domains are the sources for specific heteropolarization interactions of condensed phase nuclei with a substrate. The formation of a spatially nonuniform structure is energetically advantageous due to a nonlinear dependence of polarization energy on field strength. Domain sizes equal to several nanometers are governed by the competition between the energy advantage resulting from the coalescence of the domains and the entropy gain caused by their disintegration into smaller fragments. The forces of spontaneous mutual polarization between an adsorbed film divided into domains and a polarized substrate enhance the adhesion to the surface and markedly affect the adsorption mechanism. Computer simulation of the domain formation in a film of water molecules adsorbed on the surface of crystalline silver iodide particles is implemented by the Monte Carlo method with the summation of the long-range electrostatic interactions by means of the Fourier expansion of the field potential. Comparative analysis of the collective behavior of molecules, which underlies the layer-by-layer nucleation, and the indirect signs of domain formation is performed on the basis of experimental data on polarized surfaces with a hexagonal crystalline structure.  相似文献   
54.
55.
The behavior of the free energy of the system was analyzed. The assumption of HCl ionization in water clusters as the most probable mechanism ensuring the observed high adsorbability of ice surface relative to HCl was confirmed. It was shown that the formation of clusters containing H3O+, Cl ion pairs is an essentially kinetic process with the participation of natural ionization sources. The characteristic time of accumulation of ionized NCl was close (by an order of magnitude) to the seasonal changes of thermodynamic conditions in the stratosphere. A kinetic theory of this phenomenon was constructed, and estimates of the content of ionized component were made. Numerical values of the parameters of kinetic equations were calculated by the Monte Carlo method.  相似文献   
56.
Computer simulation has been employed to study the structure of water condensate filling planar pores 1.25 and 0.62 nm wide located parallel to the basal face in a silver iodide crystal at 260 K. All stages of adsorption of single molecules up to complete pore filling have been described. At an initial stage, strong clustering of molecules is observed on the walls; then, the walls are covered with a monomolecular film; and, at the final stage, molecules are adhered to the surface of the film, thus filling the internal space of the pore. First, adsorption occurs at the wall containing positive ions on the surface and, then, on the opposite wall with negative ions. On both walls, adsorbed molecules are adhered to the surface via the interaction with ions of the second crystallographic layer; given this, two types, α and β, of molecule plane orientation are realized on opposite walls. The adhesion of an adsorbed molecular film to molecules filling the interior of the pore requires the partial transition of film molecules from the α- to the β-type orientation on one wall and the inverse transition on the other wall. The deficiency of α-oriented molecules on one wall and β-oriented ones on the other is the main reason for poor wettability of the surface of the monomolecular films adsorbed on the walls. In an extremely narrow pore, molecules are simultaneously captured in the field of both walls. The forces acting from the sides of both walls result in the separation of a film into spots having structures matched to the crystalline structure of each wall, with the film being on the verge of breakage.  相似文献   
57.
The chemical potential, free energy, and work of hydration of a single-charged sodium cation are calculated using the Monte Carlo method for a bicanonic statistic ensemble at the molecular level at 298 K in plane model nanopores 0.5 and 0.7 nm wide. It is shown that the nanopores have a stabilizing effect on the hydrate shell of an ion. It is concluded that the crisis of stability that occurs outside a pore is transformed into an abrupt acceleration of growth with the conservation of a stable equilibrium with vapor under the conditions of plane nanopores. It is established that the mechanism of the threshold acceleration of growth inside a pore is associated with an ion being displaced from its own hydrate shell.  相似文献   
58.
The effect of steric hindrances in extremely narrow planar pores on the structure of the hydration shell of the single-charged sodium cation in water vapors at room temperature was studied by computer simulation. The deficiency of empty space for the motion in the slit-like pore was shown to slightly affect the radial distribution of molecules around the ion. The integrated (over the directions) numbers of ion-oxygen atom bonds of molecules in the ion’s hydration shell did not change despite the change in the shape of the hydration cluster from three- to two-dimensional. It was concluded that the changes in the positions of molecules relative to the ion were mainly reduced to azimuthal displacements; as a result, the local bulk density of molecules in the pore was higher than at the same distances outside the pore for the same total number of molecules. The distribution of molecules over layers inside the pore demonstrates the effect of molecules spread over the walls. The effect of ion displacement from its own hydration shell found earlier for the free chloride ion is steadily reproduced under the pore conditions. An alternative explanation to this effect was proposed that does not suggest high ion polarizability.  相似文献   
59.
Comparative analysis of different models applied in theoretical studies of electrolytes points to the considerable role of polarization interactions. In order to study aqueous electrolytes on the molecular level, a detailed model is presented of intermolecular interactions that accounts in explicit form, apart from Coulombic, exchange, and dispersion interactions, also many-body interactions caused by polarization of solvent molecules in the field of ions and ion polarization in the field of solvent molecules, and also many-body covalent interactions, effects of excess charge transfer and effects of partial counterion recharging. Numeric values of parameters for an aqueous NaCl solution are obtained by correlation of the calculated values of free energies and entropy of the first reactions of vapor molecule addition to hydrate ion shells with the corresponding experimental values and also from the experimental data on the dissociation energy and IR vibration frequencies of the ion pair and quantum-chemical calculation of the energy of stable configurations of a hydrated ion pair. A special form of describing many-body interactions allows by more than an order of magnitudes reducing the extent of the required calculations and makes it possible to apply the developed model for computer simulation of aqueous electrolytes at the room temperatures.  相似文献   
60.
The influence of many-particle interactions on the structure of Na+(H2O) n clusters at 298 K was studied by the Monte Carlo method. The interaction parameters were reproduced from the experimental data on the Gibbs energy of hydration in water vapor. The interaction of induced dipoles results in the displacement of part of molecules through large distances from the ion. Covalent interactions strengthen the bond with the first attached molecule and weaken bonds with the other molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号