全文获取类型
收费全文 | 14277篇 |
免费 | 1391篇 |
国内免费 | 2949篇 |
专业分类
化学 | 10151篇 |
晶体学 | 65篇 |
力学 | 832篇 |
综合类 | 136篇 |
数学 | 2041篇 |
物理学 | 5392篇 |
出版年
2024年 | 26篇 |
2023年 | 112篇 |
2022年 | 143篇 |
2021年 | 166篇 |
2020年 | 247篇 |
2019年 | 281篇 |
2018年 | 243篇 |
2017年 | 177篇 |
2016年 | 310篇 |
2015年 | 382篇 |
2014年 | 382篇 |
2013年 | 581篇 |
2012年 | 633篇 |
2011年 | 1802篇 |
2010年 | 1079篇 |
2009年 | 1068篇 |
2008年 | 544篇 |
2007年 | 519篇 |
2006年 | 559篇 |
2005年 | 738篇 |
2004年 | 1554篇 |
2003年 | 1034篇 |
2002年 | 985篇 |
2001年 | 737篇 |
2000年 | 396篇 |
1999年 | 407篇 |
1998年 | 381篇 |
1997年 | 286篇 |
1996年 | 188篇 |
1995年 | 185篇 |
1994年 | 154篇 |
1993年 | 462篇 |
1992年 | 529篇 |
1991年 | 345篇 |
1990年 | 340篇 |
1989年 | 327篇 |
1988年 | 85篇 |
1987年 | 21篇 |
1986年 | 44篇 |
1985年 | 43篇 |
1984年 | 27篇 |
1983年 | 19篇 |
1982年 | 17篇 |
1981年 | 5篇 |
1979年 | 6篇 |
1977年 | 5篇 |
1968年 | 3篇 |
1938年 | 4篇 |
1936年 | 3篇 |
1893年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
11.
Sheng‐Huei Hsiao Chien‐Wei Chen Guey‐Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》2004,42(13):3302-3313
Two new diamines, 2,4‐diaminotriphenylamine ( 3 ) and N‐(2,4‐diaminophenyl)carbazole ( 4 ), were synthesized via the cesium fluoride‐mediated aromatic substitution reactions of 1‐fluoro‐2,4‐dinitrobenzene with diphenylamine and carbazole, followed by palladium‐catalyzed hydrazine reduction. Amorphous and soluble aramids having pendent diphenylamino and carbazolyl groups were prepared by the phosphorylation polycondensation of aromatic dicarboxylic acids with diamines 3 and 4 , respectively. The aramids derived from diamine 3 had sufficiently high molecular weights to permit the casting of flexible and tough films. They exhibited excellent mechanical properties and moderately high softening temperatures in the 221–298 °C range. However, the reactions of diamine 4 with aromatic diacids gave relatively lower molecular weights products that could not afford flexible films. For a comparative purpose, the parent aramids derived from m‐phenylenediamine and aromatic diacids were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3302–3313, 2004 相似文献
12.
Xiao‐Hui Liu Yan‐Guo Li Ying Lin Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2007,45(7):1272-1281
The reversible addition–fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANs were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. 1H NMR analysis confirmed the high chain‐end functionality of the resultant polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1272–1281, 2007 相似文献
13.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd. 相似文献
14.
The central zinc(II) atom in the title complex is tetrahedrally coordinated by four nitrogen atoms derived from 4‐methyl‐5‐imidazolecarboxyaldehyde ligands with Zn? N in the range 2.007(3) to 2.026(4) Å. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
15.
A one‐dimensional zinc(II) coordination polymer has been constructed from zinc(II), 4,4′‐biphenyldicarboxylate and pyridine in which each zinc(II) atom is coordinated by two pyridine ligands and two monodentate 4,4′‐biphenyldicarboxylate ligands that define a distorted tetrahedral geometry. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
16.
Guey‐Sheng Liou Hung‐Yi Lin Yu‐Lun Hsieh Yi‐Lung Yang 《Journal of polymer science. Part A, Polymer chemistry》2007,45(21):4921-4932
N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine was synthesized from N‐(4‐nitrophenyl)‐diphenylamine by the Vilsmeier‐Haack reaction. Soluble aromatic poly(azomethine)s (PAMs) were prepared by the solution polycondensation of N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine and aromatic diamine in N‐methyl‐2‐pyrrolidone (NMP) at room temperature under reduced pressure. All the PAMs are highly soluble in various organic solvents, such as N,N‐dimethylacetamide (DMAc), chloroform (CHCl3), and tetrahydrofuran (THF). Differential scanning calorimetry (DSC) indicated that these PAMs had glass‐transition temperatures (Tgs) in the range of 170–230 °C, and a 10% weight‐loss temperatures in excess of 490 °C with char yield at 800 °C in nitrogen higher than 60%. These PAMs in NMP solution showed UV‐Vis charge‐transfer (CT) absorption at 405–421 nm and photoluminescence peaks around 462–466 nm with fluorescence quantum efficiency (ΦF) 0.10–0.99%. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of these PAMs can be determined from cyclic voltammograms as 4.86–5.43 and 3.31–3.34 eV, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4921–4932, 2007 相似文献
17.
Li‐Ming Tang Yan‐Guo Li Wei‐Ping Ye Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):5846-5854
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006 相似文献
18.
Chun‐Hao Huang Sheng‐Hsiung Yang Kuei‐Bai Chen Chain‐Shu Hsu 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):519-531
Five novel fluorene‐containing polymers, poly[(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA1 ), poly[(1‐pentyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene) ( PFA2 ), poly[1‐decyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA3 ), poly[1‐phenyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA4 ), and poly[1‐(3,4‐difluorophenyl)‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA5 ) were synthesized by the polymerization of the corresponding fluorene‐substituted acetylenic monomers ( M1–M5), using WCl6, MoCl5, and TaCl5 as catalysts and n‐Bu4Sn as a cocatalyst. The synthesized polymers were thermally stable and readily soluble in common organic solvents. The degradation temperatures for a 5% weight loss of the polymers were ∼352–503 °C under nitrogen. PFA1–PFA5 show emission peaks from 402 to 590 nm. Besides, their electroluminescent properties were studied in heterostructure light‐emitting diodes (LEDs), using PFA2–PFA5 as an emitting layer. The PFA5 device revealed an orange‐red emission peak at 602 nm with a maximum luminescence of 923 cd/m2 at 8 V. A device with the ITO/PEDOT/ a mixture of PFA2 (98 wt %) and PFA5 (2 wt %)/Ca/Al showed near white emission. Its maximum luminance and current efficiency are 450 cd/m2 at 15 V and 1.3 cd/A, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 519–531, 2006 相似文献
19.
Chin‐Ping Yang Yu‐Yang Su Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):5909-5922
Two series of novel fluorinated poly(ether imide)s (coded IIIA and IIIB ) were prepared from 2,6‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride and 2,7‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride, respectively, with various trifluoromethyl‐substituted aromatic bis(ether amine)s by a standard two‐step process with thermal or chemical imidization of the poly(amic acid) precursors. These fluorinated poly(ether imide)s showed good solubility in many organic solvents and could be solution‐cast into transparent, flexible, and tough films. These films were nearly colorless, with an ultraviolet–visible absorption edge of 364–386 nm. They also showed good thermal stability with glass‐transition temperatures of 221–298 °C, 10% weight loss temperatures in excess of 489 °C, and char yields at 800 °C in nitrogen greater than 50%. The 2,7‐substituted IIIB series also showed better solubility and higher transparency than the isomeric 2,6‐substituted IIIA series. In comparison with nonfluorinated poly (ether imide)s, the fluorinated IIIA and IIIB series showed better solubility, higher transparency, and lower dielectric constants and water absorption. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5909–5922, 2006 相似文献
20.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006 相似文献