首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48522篇
  免费   10684篇
  国内免费   3434篇
化学   49377篇
晶体学   487篇
力学   1254篇
综合类   185篇
数学   3547篇
物理学   7790篇
  2024年   84篇
  2023年   400篇
  2022年   589篇
  2021年   725篇
  2020年   1901篇
  2019年   3147篇
  2018年   1558篇
  2017年   1155篇
  2016年   3981篇
  2015年   4177篇
  2014年   4156篇
  2013年   5029篇
  2012年   4078篇
  2011年   3276篇
  2010年   3644篇
  2009年   3572篇
  2008年   3062篇
  2007年   2409篇
  2006年   2006篇
  2005年   2120篇
  2004年   1857篇
  2003年   1703篇
  2002年   2445篇
  2001年   1712篇
  2000年   1536篇
  1999年   690篇
  1998年   277篇
  1997年   235篇
  1996年   181篇
  1995年   145篇
  1994年   139篇
  1993年   88篇
  1992年   85篇
  1991年   95篇
  1990年   82篇
  1989年   48篇
  1988年   46篇
  1987年   33篇
  1986年   35篇
  1985年   35篇
  1984年   15篇
  1983年   14篇
  1982年   17篇
  1981年   13篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1968年   3篇
  1957年   4篇
  1936年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   
112.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   
113.
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006  相似文献   
114.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006  相似文献   
115.
Two new phenyl‐ and naphthyl‐substituted rigid‐rod aromatic dicarboxylic acid monomers, 2,2′‐diphenylbiphenyl‐4,4′‐dicarboxylic acid ( 4 ) and 2,2′‐di(1‐naphthyl)biphenyl‐4,4′‐dicarboxylic acid ( 5 ), were synthesized by the Suzuki coupling reaction of 2,2′‐diiodobiphenyl‐4,4′‐dicarboxylic acid dimethyl ester with benzeneboronic acid and naphthaleneboronic acid, respectively, followed by alkaline hydrolysis of the ester groups. Four new polyhydrazides were prepared from the dicarboxylic acids 4 and 5 with terephthalic dihydrazide (TPH) and isophthalic dihydrazide (IPH), respectively, via the Yamazaki phosphorylation reaction. These polyhydrazides were amorphous and readily soluble in many organic solvents. Differential scanning calorimetry (DSC) indicated that these hydrazide polymers had glass transition temperatures in the range of 187–234 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(1,3,4‐oxadiazole)s exhibited Tg's in the range of 252–283 °C, 10% weight‐loss temperature in excess of 470 °C, and char yield at 800 °C in nitrogen higher than 54%. These organo‐soluble polyhydrazides and poly(1,3,4‐oxadiazole)s exhibited UV–Vis absorption maximum at 262–296 and 264–342 nm in NMP solution, and their photoluminescence spectra showed maximum bands around 414–445 and 404–453 nm, respectively, with quantum yield up to 38%. The electron‐transporting properties were examined by electrochemical methods. Cyclic voltammograms of the poly(1,3,4‐oxadiazole) films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited reversible reduction redox with Eonset at ?1.37 to ?1.57 V versus Ag/AgCl in dry N,N‐dimethylformamide solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6466–6483, 2006  相似文献   
116.
We have investigated the effect of the surface state and surface treatment of the pores of an inorganic substrate on the plasma‐grafting behavior of pore‐filling‐type organic/inorganic composite membranes. Shirasu porous glass (SPG) was used as the inorganic substrate, and methyl acrylate was used as the grafting monomer. The grafting rate increased as the density of silanol on the SPG substrate increased. This result suggests that radicals are generated mainly at the silanol groups on the pore surface by plasma irradiation. The SPG substrates were treated with silane coupling agents used to control the mass of organic material bonded to the pore surface. The thickness of the grafted layer became thinner as the mass of organic material bonded to the pore surface of SPG increased. This decrease in the thickness of the grafted layer could be explained by the decrease in the penetration depth of vacuum ultraviolet rays contained in plasma having a wavelength of less than 160 nm that generated radicals in the pores of the substrate. The thickness of the grafted layer inside the SPG substrates could be controlled through the control of the mass of organic material bonded to the pore surface of the SPG substrate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 846–856, 2006  相似文献   
117.
We fabricated a micrometer‐long supramolecular chain in which π‐conjugated polyrotaxane was coupled. A new experimental setup was designed and constructed, and the simultaneous direct imaging of the structure and fluorescent function was achieved. Furthermore, we identified the formation of a polymer intertwined network and observed novel fluorescence due to a long‐range interaction via this intertwined network over a distance of 5 μm or more without quenching over 15 min in the near field. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 801–809, 2006  相似文献   
118.
Mechanisms and simulations of the induction period and the initial polymerization stages in the nitroxide‐mediated autopolymerization of styrene are discussed. At 120–125 °C and moderate 2,2,4,4‐tetramethyl‐1‐piperidinyloxy (TEMPO) concentrations (0.02–0.08 M), the main source of radicals is the hydrogen abstraction of the Mayo dimer by TEMPO [with the kinetic constant of hydrogen abstraction (kh)]. At higher TEMPO concentrations ([N?] > 0.1 M), this reaction is still dominant, but radical generation by the direct attack against styrene by TEMPO, with kinetic constant of addition kad, also becomes relevant. From previous experimental data and simulations, initial estimates of kh ≈ 1 and kad ≈ 6 × 10?7 L mol?1 s?1 are obtained at 125 °C. From the induction period to the polymerization regime, there is an abrupt change in the dominant mechanism generating radicals because of the sudden decrease in the nitroxide radicals. Under induction‐period conditions, the simulations confirm the validity of the quasi‐steady‐state assumption (QSSA) for the Mayo dimer in this regime; however, after the induction period, the QSSA for the dimer is not valid, and this brings into question the scientific basis of the well‐known expression kth[M]3 (where [M] is the monomer concentration and kth is the kinetic constant of autoinitiation) for the autoinitiation rate in styrene polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6962‐6979, 2006  相似文献   
119.
Divinylsiloxane‐bisbenzocyclobutene (DVS‐bisBCB) polymer has very low dielectric constant and dissipation factor, good thermal stability, and high chemical resistance. The fracture toughness of the thermoset polymer is moderate due to its high crosslink density. A thermoplastic elastomer, polystyrene–polybutadiene–polystyrene triblock copolymer, was incorporated into the matrix to enhance its toughness. The cured thermoset matrix showed different morphology when the elastomer was added to the B‐staged prepolymer or when the elastomer was B‐staged with the DVS‐bisBCB monomer. Small and uniformly distributed elastomer domains were detected by transmission electron micrographs (TEM) in the former case, but TEM did not detect a separate domain in the latter case. A high percentage of the polystyrene–polybutadiene–polystyrene triblock copolymer could be incorporated into the DVS‐bisBCB thermoset matrix by B‐staging the triblock copolymer with the BCB monomer. The elastomer increased the fracture toughness of DVS‐bisBCB polymer as indicated by enhanced elongation at break and increased K1c values obtained by the modified edge‐lift‐off test. Elastomer modified DVS‐bisBCB maintained excellent electrical properties, high Tg and good thermal stability, but showed higher coefficient of linear thermal expansion values. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1591–1599, 2006  相似文献   
120.
Two series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) (DP‐PPV) derivatives containing multiple bulky substituents were synthesized. In the first series, two different groups were incorporated on C‐5,6 positions of the phenylene moiety to increase steric hindrance and to obtain blue‐shifted emissions. In the second series, bulky fluorenyl groups with two hexyl chains on the C‐9 position were introduced on two phenyl pendants to increase the solubility as well as steric hindrance to prevent close packing of the main chain. Polymers with high molecular weights and fine‐tuned electro‐optical properties were obtained by controlling the feed ratio of different monomers during polymerization. The maximum photoluminescent emissions of the thin films are located between 384 and 541 nm. Cyclic voltammetric analysis reveals that the band gaps of these light‐emitting materials are in the range from 2.4 to 3.3 eV. A double‐layer EL device with the configuration of ITO/PEDOT/P4/Ca/Al emitted pure green light with CIE′1931 at (0.24, 0.5). Using copolymer P6 as the emissive layer, the maximum luminescence and current efficiency were both improved when compared with the homopolymer P4. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6738–6749, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号