首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   9篇
化学   148篇
力学   3篇
数学   26篇
物理学   32篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   7篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   3篇
  2013年   11篇
  2012年   12篇
  2011年   15篇
  2010年   8篇
  2009年   3篇
  2008年   14篇
  2007年   9篇
  2006年   12篇
  2005年   11篇
  2004年   10篇
  2003年   6篇
  2002年   11篇
  2001年   3篇
  2000年   4篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1990年   1篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1976年   1篇
  1966年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
71.
Porton and carbon spin-lattice relaxation times T1 and nuclear Overhauser enhancements are interpreted in terms of motions likely in linear polyisobutylene. Most of the interpretation is based on relaxation data in the literature, but some additional 1H and 13C pulse Fourier transform experiments were conducted to resolve a disagreement in the literature concerning cross relaxation between the two types of protons present in polyisobutylene. Spin relaxation in solution and the bulk is accounted for by three specific motions considered as independent sources of motional modulation of the dipole–dipole interaction. The first motion is overall isotropic rotatory diffusion which has a known dependence on molecular weight, intrinsic viscosity, and solvent viscosity for polymers in solution, and a known dependence on molecular weight and viscosity for bulk polymers. The effects of overall tumbling account for a decrease of T1 for the methylene and methyl carbons with increasing molecular weight in solution and increase of T1 of methylene carbons with molecular weight in bulk. The second motion considered is backbone rearrangements caused by the three-bond jump. This motion dominates relaxation of the methylene carbons either in solution or in the bulk allowing for the determination of the associated correlation time. The correlation time characterizing the occurrence of the three-bond jump in a 5% (wt/vol) solution in CCI4 at 45°C is 58 psec, and in the bulk at 45°C it is 11 nsec. The last motion included in the model is methyl-group rotation about the threefold symmetry axis. The methyl-group rotational correlation time is 0.20 nsec in a 5% (wt/vol) solution in CCI4 at 45°C and 0.33 nsec in the bulk at 45°C. The concentration dependence of the backbone motion contrasts strongly with the corresponding dependence of methyl-group rotation.  相似文献   
72.
Monte Carlo simulations are used to calculate the equation of state and free energy of dipolar hard sphere fluids at low temperatures and densities. Evidence for the existence of isotropic-fluid-isotropic-fluid phase transitions is presented and discussed. Condensation in the dipolar hard sphere fluid is unusual in that it is not accompanied by large energy or entropy changes. An explanation of this behavior is put forward.  相似文献   
73.
74.
75.
Obesity is a significant health problem worldwide. Exposure to low‐dose ultraviolet radiation (like that in sunlight) suppresses the development of obesity in mice; however, the nature of the associations between sun exposure and adiposity is not well understood in humans. The present study characterized cross‐sectional relationships between sun exposure and adiposity in a convenience cohort of breast (n = 269; mean age = 58 years) and prostate (n = 78; mean age = 69 years) cancer patients. Participants were enrolled in a 3‐month exercise program in Perth, Australia. Self‐reported questionnaires measured time spent outdoors (previous week, winter and summer), sex, age, treatment received and physical activity levels. Adiposity measures included body mass index, waist‐hip ratio and body fat percentage (measured via DXA). In unadjusted models, greater time spent outdoors across all times was significantly associated with lower waist‐hip ratio, while greater time spent outdoors in the last winter was associated with lower body fat percentage, but not when stratified by sex. There were no statistically significant associations between time spent outdoors and adiposity after adjusting for sex, age, treatments received and physical activity. Longitudinal studies in larger populations may elucidate significant associations not found in our study due to the cross‐sectional design and power limitations.  相似文献   
76.
77.
78.
We report an organic redox‐polymer‐based electroenzymatic nitrogen fixation system using a metal‐free redox polymer, namely neutral‐red‐modified poly(glycidyl methacrylate‐co‐methylmethacrylate‐co‐poly(ethyleneglycol)methacrylate) with a low redox potential of ?0.58 V vs. SCE. The stable and efficient electric wiring of nitrogenase within the redox polymer matrix enables mediated bioelectrocatalysis of N3?, NO2? and N2 to NH3 catalyzed by the MoFe protein via the polymer‐bound redox moieties distributed in the polymer matrix in the absence of the Fe protein. Bulk bioelectrosynthetic experiments produced 209±30 nmol NH3 nmol MoFe?1 h?1 from N2 reduction. 15N2 labeling experiments and NMR analysis were performed to confirm biosynthetic N2 reduction to NH3.  相似文献   
79.
Lipids are a major component of heart tissue and perform several important functions such as energy storage, signaling, and as building blocks of biological membranes. The heart lipidome is quite diverse consisting of glycerophospholipids such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), cardiolipins (CLs), and glycerolipids, mainly triacylglycerols (TAGs). In this study, mass spectrometry imaging (MSI) enabled by matrix implantation of ionized silver nanoparticles (AgNP) was used to map several classes of lipids in heart tissue. The use of AgNP matrix implantation was motivated by our previous work showing that implantation doses of only 1014/cm2 of 2 nm gold nanoparticulates into the first 10 nm of the near surface of the tissue enabled detection of most brain lipids (including neutral lipid species such as cerebrosides) more efficiently than traditional organic MALDI matrices. Herein, a similar implantation of 500 eV AgNP? across the entire heart tissue section results in a quick, reproducible, solvent-free, uniform matrix concentration of 6 nm AgNP residing near the tissue surface. MALDI-MSI analysis of either positive or negative ions produce high-quality images of several heart lipid species. In negative ion mode, 24 lipid species [16 PEs, 4 PIs, 1 PG, 1 CL, 2 sphingomyelins (SMs)] were imaged. Positive ion images were also obtained from 29 lipid species (10 PCs, 5 PEs, 5 SMs, 9 TAGs) with the TAG species being heavily concentrated in vascular regions of the heart.  相似文献   
80.
The average size of inert particles is determined using a simple electrochemical procedure. Alumina particles are deposited on an edge-plane graphite electrode, and a cyclic voltammogram is recorded. The scan rate employed varies between 0.2 and 2 V s(-1). At these scan rates the diffusion layer thickness is greater than the size of the alumina particles, minimizing the influence of the particles' height on the observed voltammetry. The average size of the particles is determined via comparison of the experimental voltammograms with simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号