首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   7篇
  国内免费   4篇
化学   232篇
晶体学   6篇
力学   5篇
数学   21篇
物理学   189篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   7篇
  2014年   11篇
  2013年   21篇
  2012年   11篇
  2011年   21篇
  2010年   9篇
  2009年   17篇
  2008年   25篇
  2007年   15篇
  2006年   29篇
  2005年   14篇
  2004年   21篇
  2003年   11篇
  2002年   14篇
  2001年   8篇
  2000年   21篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   7篇
  1990年   9篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   7篇
  1979年   5篇
  1978年   7篇
  1977年   3篇
  1976年   9篇
  1975年   13篇
  1974年   4篇
  1973年   5篇
  1972年   4篇
  1882年   2篇
  1868年   2篇
排序方式: 共有453条查询结果,搜索用时 0 毫秒
101.
102.
Degradation products resulting from modified Fenton reactions with the nitroaromatic compounds trinitrotoluene (TNT) and trinitrobenzene (TNB) were identified by electrospray ionization tandem mass spectrometry (ESI-MS-MS). Several hydroperoxide adducts were tentatively identified as initial, one-electron reduction products of TNT and tandem mass spectrometry confirmed their structure. A transformation pathway of TNT, resulting from reactions with oxygen radical species generated by the modified Fenton reaction, was proposed.  相似文献   
103.
Near-monodisperse, siloxane-functionalised silica particles are used as a colloidal substrate for the surface-initiated polymerisation of various hydrophilic methacrylates: oligo(ethylene glycol) methacrylate (OEGMA), 2-(N-morpholino)ethyl methacrylate (MEMA), and ammonium 2-sulfatoethyl methacrylate (SEM) by atom transfer radical polymerisation in aqueous media at room temperature. The bulk and surface compositions of the resulting composite particles were assessed using various techniques. Thermogravimetric analysis of the resulting silica-polymer composites indicated polymer loadings of 5.4-8.6%, depending on the nature, structure and target degree of polymerisation (Dp). Dynamic light scattering studies indicate increases in hydrodynamic diameter of 14-87 nm compared to the reference silica particles. FT-IR spectroscopy confirmed additional features characteristic of the carbonyl group and pendant end-chain functionalities of the methacrylic polymer chains. The elemental and chemical surface compositions of the initial silica particles and final polymer-grafted composite particles were extensively investigated by X-ray photoelectron spectroscopy (XPS). The composite particles had appreciably higher C/Si atomic ratios, compared to the original initiator-functionalised silica particles, and these ratios increased with increasing target Dp. In addition, close inspection revealed that the relative intensities of the various components of the peak-fitted C1s envelopes varied significantly, depending on the target degree of polymerisation and the chemical structure of the methacrylic monomer. Moreover, in the case of the MEMA and SEM polymerisations, new nitrogen (MEMA) and sulfur (SEM) XPS signals were detected. This XPS study confirmed the presence of a thin outer layer of grafted polymer chains surrounding the silica particles.  相似文献   
104.
Nolen EG  Watts MM  Fowler DJ 《Organic letters》2002,4(22):3963-3965
[formula: see text] The stereoselective preparation of C-linked D-gluco- and D-galactopyranosyl L-serines in their alpha and beta forms is herein reported. The syntheses require the conversion of the allyl C-glycopyranosides into their iodoethyl derivatives, which then undergo substitution with the Williams' chiral glycine enolate equivalent. Deprotection and acetylation affords Boc-protected amino acids for peptide synthesis.  相似文献   
105.
This article reviews the current and future applications of micro reactors in the field of combinatorial chemistry and drug discovery. Liquid phase reactions have been used to illustrate the advantages of performing chemical reactions in micro reactors which illustrate that reactions can be performed very rapidly in high yield to enable the preparation of combinatorial libraries of structurally related compounds.  相似文献   
106.
In this paper, we describe an implicit hybrid finite volume (FV)/element (FE) incompressible Navier–Stokes solver for turbulent flows based on the Spalart–Allmaras detached eddy simulation (SA‐DES). The hybrid FV/FE solver is based on the segregated pressure correction or projection method. The intermediate velocity field is first obtained by solving the original momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centers and the auxiliary variable at vertices, making the current solver a staggered‐mesh scheme. The SA‐DES turbulence equation is solved after the velocity and the pressure fields have been updated at the end of each time step. The same matrix‐free FV method as the one used for momentum equations is used to solve the turbulence equation. The turbulence equation provides the eddy viscosity, which is added to the molecular viscosity when solving the momentum equation. In our implementation, we focus on the accuracy, efficiency and robustness of the SA‐DES model in a hybrid flow solver. This paper will address important implementation issues for high‐Reynolds number flows where highly stretched elements are typically used. In addition, some aspects of implementing the SA‐DES model will be described to ensure the robustness of the turbulence model. Several numerical examples including a turbulent flow past a flat plate and a high‐Reynolds number flow around a high angle‐of‐attack NACA0015 airfoil will be presented to demonstrate the accuracy and efficiency of our current implementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
107.
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号