首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1108篇
  免费   23篇
  国内免费   7篇
化学   665篇
晶体学   8篇
力学   79篇
数学   138篇
物理学   248篇
  2021年   9篇
  2020年   9篇
  2019年   11篇
  2018年   10篇
  2017年   7篇
  2016年   13篇
  2015年   10篇
  2014年   18篇
  2013年   60篇
  2012年   48篇
  2011年   52篇
  2010年   25篇
  2009年   31篇
  2008年   47篇
  2007年   67篇
  2006年   58篇
  2005年   50篇
  2004年   27篇
  2003年   38篇
  2002年   38篇
  2001年   18篇
  2000年   31篇
  1999年   16篇
  1998年   15篇
  1997年   15篇
  1996年   22篇
  1995年   15篇
  1994年   14篇
  1993年   18篇
  1992年   25篇
  1991年   19篇
  1990年   16篇
  1989年   9篇
  1988年   19篇
  1987年   12篇
  1986年   11篇
  1985年   12篇
  1983年   17篇
  1981年   12篇
  1980年   19篇
  1979年   11篇
  1978年   8篇
  1977年   27篇
  1976年   8篇
  1975年   15篇
  1974年   15篇
  1973年   12篇
  1972年   10篇
  1968年   8篇
  1967年   6篇
排序方式: 共有1138条查询结果,搜索用时 0 毫秒
91.
The synthesis of ORganically MOdified SILica (ORMOSIL) particles has been carried out using both the hydrolytic and non-hydrolytic sol-gel routes. The hybrid (nano)composites are organically modified with an alkyl or aryl group covalently bonded to silicon. Hybrids have been synthesised in an aqueous sol-gel process by a modified Stöber route, producing spherical nanoparticles with diameters in the range 50–300 nm. The size of the particles can be controlled by control of certain reaction parameters. Smaller ormosil nanoparticles can be synthesised by a base-catalysed emulsion polymerisation route, by varying the type and concentration of surfactant and precursor feed rate. In this case, particles in the size range 3.5–10 nm can be obtained. Hybrids have been synthesised from hyperbranched polyesters by encapsulation in a silica matrix using the hydrolytic sol-gel route. Optimisation of the reaction conditions allows the hybrids to be produced as isolated sub-micron spherical particles. Ormosil particles have also been synthesised using the non-hydrolytic sol-gel route, which may lead to products of different morphologies because of the different polarity of the reaction medium. Different reaction conditions were studied in order to optimise the size and shape of the particles, including choice of solvent, use of surfactants and addition of polystyrene. Dimethylsulfoxide acts as a novel oxygen donor for the catalyst-free formation of colourless silsesquioxanes.  相似文献   
92.
Dynorphin A 1–17 (DYN A) is an endogenous neuropeptide that is of interest due to its diverse roles in analgesia, inflammation and addiction. Upon release, DYN A is subject to metabolism by a range of enzymes and its biotransformation is dependent on the site and environment into which it is released. In this study, we investigated the biotransformation of DYN A in rat inflamed tissue at pH?7.4 and 5.5, in rat serum and in trypsin solution. DYN A-porcine was incubated at 37?°C in each matrix over a range of incubation periods. The resultant fragments were separated using a C4 column and detected by mass spectrometry using total ion current mode. Incubation of DYN A in trypsin solution and in rat serum resulted in 6 and 14 fragments, respectively. Incubation in inflamed rat paw tissue occasioned 21 fragments at pH?7.4 and 31 fragments at pH?5.5. Secondary breakdown of some larger primary fragments was also observed in this study.  相似文献   
93.
A series of 2′‐arenesulfonyloxy‐5‐benzylidene‐thiazolidine‐2,4‐diones (TZDs) were synthesized and examined for their antiproliferative effects on a panel of carcinoma cell lines. Our results indicated that initial synthesis of 5‐[2′‐hydroxybenzylidene]‐2,4‐thiazolidinone (9) by Knoevenagel condensation followed by nucleophilic substitution with arylsulfonyl chlorides exhibited superior efficiency to the alternative synthetic route. Among tested compounds, only 8c and 8e showed significant antiproliferative activity against PC‐3 and BT474 cells with GI50 values of 8.4 and 20.6 μM, respectively. SKHep cells displayed interesting structure‐activity relationships in response to TZD derivatives treatment. Alkyl group‐substituted TZD analogs such as 8a (4‐Me, GI50, 9.4 μM) and 8k (4‐iso‐propyl, GI50, 9.8 μM) revealed better antiproliferative activity than those with bulkier alkyl groups. On the other hand, halogen‐substituted TZD analogs 8c, 8h, and 8i showed better antiproliferative activity against H460 cell line. Together, the new synthesized TZD derivatives 8a , 8b , 8c , 8d , 8e , 8f , 8g , 8h , 8i , 8j , 8k , 8l , 8m , 8n , 8o , 8p exhibited appreciable antiproliferative activity worth for further study.  相似文献   
94.
A highly enantioselective, nitroaldol reaction catalyzed by a chiral Cu(II) bis(oxazoline) complex has been developed. The reaction scope includes both aromatic and aliphatic aldehydes (15 examples) affording products in good yields and enantioselectivities (87-94% ee). An X-ray structure of the catalyst has been provided along with a rationalization of the sense of asymmetric induction.  相似文献   
95.
A versatile solid phase combinatorial approach was developed and utilized for the rapid synthesis of new 2'-O-methylcytidine nucleoside libraries 1-7 containing 672 compounds with 3'-deoxy-3'-C-methyl, 3'-deoxy-3'-C-hydroxymethyl, and 5-alkyl/alkynyl modifications. The modified uridine scaffolds 8-10, 23-25, and 31 were loaded onto the 4-methoxytrityl chloride (MMT-Cl) polystyrene resin through the hydroxyl groups at the 5'-position as well as on the substituents at the 3'- and 5-positions. The scaffolds loaded on the resin were orthogonally protected by MMT group on the resin itself and TBDMS or acetyl protecting groups. The 4-position of the uridine derivatives was activated by 2,4,6-triisopropyl benzene sulfonyl chloride for further derivatization. The resins 14-16, 28-30, and 32 loaded with the corresponding activated scaffolds were reacted with the selected and validated amino building blocks in the 96 well format on the semiautomated synthesizer. The high-quality 2'-O-methylcytidine libraries 1-7 were thus generated and characterized by liquid chromatography-mass spectrometry (LC-MS) analysis with 63-99% successful rates.  相似文献   
96.
Catalytic, peptide‐containing metal complexes with a well‐defined peptide structure have the potential to enhance molecular catalysts through an enzyme‐like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide‐based metal complex built upon the well‐characterized hydrogen production catalyst [Ni(PPh2NPh)2]2+ (PPh2NPh=1,3,6‐triphenyl‐1‐aza‐3,6‐diphosphacycloheptane). The incorporated peptide maintains its β‐hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide‐based metal complex (≈100,000 s?1) is enhanced compared to the parent complex ([Ni(PPh2NAPPA)2]2+; ≈50,500 s‐1). The combination of an active molecular catalyst with a structured peptide provides a scaffold that permits the incorporation of features of an enzyme‐like outer‐coordination sphere necessary to create molecular electrocatalysts with enhanced functionality.  相似文献   
97.
The direct synthesis of hydrogen peroxide offers a potentially green route to the production of this important commodity chemical. Early studies showed that Pd is a suitable catalyst, but recent work indicated that the addition of Au enhances the activity and selectivity significantly. The addition of a third metal using impregnation as a facile preparation method was thus investigated. The addition of a small amount of Pt to a CeO2‐supported AuPd (weight ratio of 1:1) catalyst significantly enhanced the activity in the direct synthesis of H2O2 and decreased the non‐desired over‐hydrogenation and decomposition reactions. The addition of Pt to the AuPd nanoparticles influenced the surface composition, thus leading to the marked effects that were observed on the catalytic formation of hydrogen peroxide. In addition, an experimental approach that can help to identify the optimal nominal ternary alloy compositions for this reaction is demonstrated.  相似文献   
98.
99.
A uniform dispersion of reactants is necessary to achieve a complete reaction involving multicomponents. In this study, we have examined the role of plasticizer in the reaction of two seemingly unlikely reactants: a highly crystalline hexamethylenetetramine (HMTA) and a strongly hydrogen bonded phenol formaldehyde resin. By combining information from NMR, infrared spectroscopy and differential scanning calorimetry, we were able to determine the role of specific intermolecular interactions necessary for the plasticizer to dissolve the highly crystalline HMTA and to plasticize the phenol formaldehyde resin in this crosslinking reaction. The presence of the plasticizer increased the segmental mobility, disrupted the hydrogen bonded matrix, and freed the hydroxyl units, which further increased the solubility of the HMTA. Both the endothermic and exothermic transitions are accounted for in the calorimetric data obtained. For the first time, it is possible to obtain the effective molar ratio of each component needed to complete the crosslinking reaction efficiently. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1519–1526  相似文献   
100.
A recoverable, water soluble, hydrogenation catalyst was synthesized by reacting poly-N-isopropylacrylamide containing a terminal amino group (H2N-CH2CH2-S-pNIPAAm) with [Rh(CO)2Cl]2 in organic solvents to form the square planar rhodium complex (Rh(CO)2Cl(H2N-CH2CH2-S-pNIPAAm)). The catalyst-ligand structure was characterized using in situ multinuclear NMR, XAFS and IR spectroscopic methods. Model complexes containing glycine (H2NCH2COOH), cysteamine (H2NCH2CH2SH) and methionine methyl ester (H2NCH(CH2CH2SCH3)COOCH3) ligands were studied to aid in the interpretation of the coordination sphere of the rhodium catalyst. The spectroscopic data revealed a switch in ligation from the amine bound (Rh-NH2-CH2CH2-S-pNIPAAm) to the thioether bound (Rh-S(-CH2CH2NH2)(-pNIPAAm)) rhodium when the complex was dissolved in water. The evolution of the structure of the rhodium complex dissolved in water was followed by XAFS. The structure changed from the expected monomeric complex to form a rhodium cluster of up to four rhodium atoms containing one SRR′ ligand and one CO ligand per rhodium center. No metallic rhodium was observed during this transformation. The rhodium-rhodium interactions were disrupted when an alkene (3-butenol) was added to the aqueous solution. The kinetics of the hydrogenation reaction were measured using a novel high-pressure flow-through NMR system and the catalyst was found to have a TOF of 3000/Rh/h at 25 °C for the hydrogenation of 3-butenol in water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号