首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1019篇
  免费   43篇
  国内免费   5篇
化学   703篇
晶体学   30篇
力学   25篇
数学   74篇
物理学   235篇
  2024年   3篇
  2023年   5篇
  2022年   37篇
  2021年   46篇
  2020年   32篇
  2019年   44篇
  2018年   35篇
  2017年   19篇
  2016年   51篇
  2015年   37篇
  2014年   49篇
  2013年   96篇
  2012年   87篇
  2011年   77篇
  2010年   57篇
  2009年   37篇
  2008年   54篇
  2007年   47篇
  2006年   38篇
  2005年   28篇
  2004年   32篇
  2003年   20篇
  2002年   19篇
  2001年   5篇
  2000年   15篇
  1999年   7篇
  1998年   6篇
  1997年   1篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   9篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   11篇
  1988年   3篇
  1987年   7篇
  1985年   1篇
  1984年   2篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1977年   2篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
排序方式: 共有1067条查询结果,搜索用时 15 毫秒
51.
Breath figure formation was carried out directly on the surface of poly(methylmethacrylate) using a mixture of a good solvent, tetrahydrofuran, and a nonsolvent, water. Direct breath figure formation was coined for this method and a mechanism was proposed to describe the figure formation by the method based on hypothesizes available for the normal breath figure formation. The proposed mechanism is such that the sonication effect, immersion time, and water content on characteristics of the obtained figures can be explained. The figured surface was then made superhydrophobic with a water contact angle of 175° using in situ growing of perfluoro modified silica nanoparticles inside the figure cell by one-pot method. The spherical modified silica nanoparticles were detected being trapped by figure features providing a mechanical entrapment of the low-surface energy nanoparticles. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   
52.
This paper reports the synthesis and characterization of gallium nitride (GaN) thin films deposited on p-type silicon (100) substrates by using low cost spin coating method under various nitridation temperatures. This work demonstrated that spin coating with the new prepared precursor solution can be used as a versatile method for the successfully growth of GaN thin films. Furthermore, the influence of varying nitridation temperatures on the structural, morphological, and optical properties of synthesized GaN thin films were studied in this work. The GaN thin films were characterized by X-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, photoluminescence and Raman spectroscopy. All the characteristics of the GaN thin films were effectively improved with the increasing of the nitridation temperatures from 750 to 950 °C and degraded at temperature of 1,050 °C. The measured results show that nitridation temperature plays an important role in improving the crystalline quality of the GaN thin films and the most efficient nitridation temperature was at 950 °C.  相似文献   
53.
The promiscuous aldo–ketoreductase (AKR) enzyme is used as a sustainable biocatalyst for the first time to catalyze asymmetric aldol reactions in aqueous medium. The reactions between aromatic aldehydes and cyclic/acyclic ketones give the corresponding products in moderate yields and enantioselectivities in the presence of water. The influence of solvents, the mole ratio of substrates, and enzyme concentration are investigated. The mechanism of the AKR1A1-catalyzed aldol reaction is also discussed.  相似文献   
54.
BackgroundThe recent pandemic by COVID-19 is a global threat to human health. The disease is caused by SARS-CoV-2 and the infection rate is increased more quickly than MERS and SARS as their rapid adaptation to varied climatic conditions through rapid mutations. It becomes more severe due to the lack of proper therapeutic drugs, insufficient diagnostic tool, scarcity of appropriate drug, life supporting medical facility and mostly lack of awareness. Therefore, preventive measure is one of the important strategies to control. In this context, herbal medicinal plants received a noticeable attention to treat COVID-19 in Indian subcontinent. Here, 44 Indian traditional plants have been discussed with their novel phytochemicals that prevent the novel corona virus. The basic of SARS-CoV-2, their common way of transmission including their effect on immune and nervous system have been discussed. We have analysed their mechanism of action against COVID-19 following in-silico analysis. Their probable mechanism and therapeutic approaches behind the activity of phytochemicals to stimulate immune response as well as inhibition of viral multiplication discussed rationally. Thus, mixtures of active secondary metabolites/phytochemicals are the only choice to prevent the disease in countries where vaccination will take long time due to overcrowded population density.  相似文献   
55.
Ionics - A mercury(II) sensor was developed by using single-walled carbon nanotube (SWCNT) paste electrode modified with layered double Zn/Al hydroxide-3(4-methoxyphenyl)propionate nanocomposite...  相似文献   
56.
In spite of large spin coherence length in graphene due to small spin–orbit coupling, the created potential barrier and antiferromagnetic coupling at graphene/transition metal (TM) contacts strongly reduce the spin transport behavior in graphene. Keeping these critical issues in mind in the present work, ferromagnetic (Co, Ni) nanosheets are grown on graphene surface to elucidate the nature of interaction at the graphene/ferromagnetic interface to improve the spin transistor characteristics. Temperature dependent magnetoconductance shows unusual behavior exhibiting giant enhancement in magnetoconductance with increasing temperature. A model based on spin–orbit coupling operated at the graphene/TM interface is proposed to explain this anomalous result. We believe that the device performance can be improved remarkably tuning the spin–orbit coupling at the interface of graphene based spin transistor. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
57.
Thermal techniques, differential scanning calorimetry (DSC), and hot stage microscopy (HSM) have been used to study the interactions between furosemide and caffeine that are known to form a 1:1 cocrystal. This system has been used as an example to study the probable mechanism of cocrystal formation when the individual components, which are polymorphic, are heated. The study indicates that the phase transition of the low temperature stable polymorph of furosemide initiates cocrystal formation. This result suggests increased mass transfer rate can trigger cocrystal formation. The binary phase diagram (composition–temperature plots) of furosemide–cocrystal–caffeine system was determined from the DSC curves. The results imply that the cocrystal forms eutectic with caffeine but not with furosemide. This study has thus exemplified the use of DSC in understanding binary phase system where the two components form a cocrystal.  相似文献   
58.
The performance of single-, double- and triple-chain anionic sulphosuccinate surfactants for dispersing multiwall carbon nanotubes (MWNCTs) in natural rubber latex (NR-latex) was studied using a range of techniques, including field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. The conductivities of the nanocomposites were also investigated using four-point probe measurements. Here, MWCNTs were efficiently dispersed in NR-latex with the aid of hyperbranched tri-chain sulphosuccinate anionic surfactants, specifically sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulphonate (TC14). This paper highlights that TC14 performs much better than that of the commercially available surfactant sodium dodecyl sulphate (SDS), demonstrating how careful consideration of surfactant architecture leads to improved dispersibility of MWCNTs in NR-latex. The results should be of significant interest for improving nanowiring applications suitable for aerospace-based technology.  相似文献   
59.
Aims: Angiotensin-converting enzyme 2 (ACE2) plays an important role in the entry of coronaviruses into host cells. The current paper described how carnosine, a naturally occurring supplement, can be an effective drug candidate for coronavirus disease (COVID-19) on the basis of molecular docking and modeling to host ACE2 cocrystallized with nCoV spike protein. Methods: First, the starting point was ACE2 inhibitors and their structure–activity relationship (SAR). Next, chemical similarity (or diversity) and PubMed searches made it possible to repurpose and assess approved or experimental drugs for COVID-19. Parallel, at all stages, the authors performed bioactivity scoring to assess potential repurposed inhibitors at ACE2. Finally, investigators performed molecular docking and modeling of the identified drug candidate to host ACE2 with nCoV spike protein. Results: Carnosine emerged as the best-known drug candidate to match ACE2 inhibitor structure. Preliminary docking was more optimal to ACE2 than the known typical angiotensin-converting enzyme 1 (ACE1) inhibitor (enalapril) and quite comparable to known or presumed ACE2 inhibitors. Viral spike protein elements binding to ACE2 were retained in the best carnosine pose in SwissDock at 1.75 Angstroms. Out of the three main areas of attachment expected to the protein–protein structure, carnosine bound with higher affinity to two compared to the known ACE2 active site. LibDock score was 92.40 for site 3, 90.88 for site 1, and inside the active site 85.49. Conclusion: Carnosine has promising inhibitory interactions with host ACE2 and nCoV spike protein and hence could offer a potential mitigating effect against the current COVID-19 pandemic.  相似文献   
60.
The biocathode in a microbial fuel cell (MFC) system is a promising and a cheap alternative method to improve cathode reaction performance. This study aims to identify the effect of the electrode combination between non-chemical modified stainless steel (SS) and graphite fibre brush (GFB) for constructing bio-electrodes in an MFC. In this study, the MFC had two chambers, separated by a cation exchange membrane, and underwent a total of four different treatments with different electrode arrangements (anodeǁcathode)—SSǁSS (control), GFBǁSS, GFBǁGFB and SSǁGFB. Both electrodes were heat-treated to improve surface oxidation. On the 20th day of the operation, the GFBǁGFB arrangement generated the highest power density, up to 3.03 W/m3 (177 A/m3), followed by the SSǁGFB (0.0106 W/m3, 0.412 A/m3), the GFBǁSS (0.0283 W/m3, 17.1 A/m3), and the SSǁSS arrangements (0.0069 W/m−3, 1.64 A/m3). The GFBǁGFB had the lowest internal resistance (0.2 kΩ), corresponding to the highest power output. The other electrode arrangements, SSǁGFB, GFBǁSS, and SSǁSS, showed very high internal resistance (82 kΩ, 2.1 kΩ and 18 kΩ, respectively) due to the low proton and electron movement activity in the MFC systems. The results show that GFB materials can be used as anode and cathode in a fully biotic MFC system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号