首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55991篇
  免费   8416篇
  国内免费   5458篇
化学   38443篇
晶体学   694篇
力学   3275篇
综合类   330篇
数学   6056篇
物理学   21067篇
  2024年   626篇
  2023年   1283篇
  2022年   2297篇
  2021年   2601篇
  2020年   2769篇
  2019年   2671篇
  2018年   1854篇
  2017年   1791篇
  2016年   2686篇
  2015年   2648篇
  2014年   3117篇
  2013年   3964篇
  2012年   4848篇
  2011年   4785篇
  2010年   3322篇
  2009年   3111篇
  2008年   3338篇
  2007年   2957篇
  2006年   2652篇
  2005年   2278篇
  2004年   1756篇
  2003年   1387篇
  2002年   1274篇
  2001年   1017篇
  2000年   897篇
  1999年   1044篇
  1998年   861篇
  1997年   806篇
  1996年   795篇
  1995年   726篇
  1994年   612篇
  1993年   519篇
  1992年   430篇
  1991年   392篇
  1990年   333篇
  1989年   243篇
  1988年   180篇
  1987年   165篇
  1986年   162篇
  1985年   143篇
  1984年   88篇
  1983年   96篇
  1982年   55篇
  1981年   39篇
  1980年   31篇
  1979年   18篇
  1977年   18篇
  1976年   20篇
  1975年   21篇
  1972年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Multidrug-resistant bacterial infections mediated by metallo-β-lactamases (MβLs) have grown into an emergent health threat, and development of novel antimicrobials is an ideal strategy to combat the infections. Herein, a novel vancomycin derivative Vb was constructed by conjugation of triazolylthioacetamide and vancomycin molecules, characterized by reverse-phase high performance liquid chromatography (HPLC) and confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The biological assays revealed that Vb effectively inhibited S. aureus and methicillin-resistant S. aureus (MRSA), gradually increased the antimicrobial effect of β-lactam antibiotics (cefazolin, meropenem and penicillin G) and exhibited a dose-dependent synergistic antibacterial effect against eight resistant strains tested, which was confirmed by the time-kill curves determination. Most importantly, Vb increased the antimicrobial effect of meropenem against the clinical isolates EC08 and EC10 and E. coli producing ImiS and CcrA, resulting in a 4- and 8-fold reduction in MIC values, respectively, at a dose up to 32 μg/mL. This work offers a promising scaffold for the development of MβLs inhibitors, specifically antimicrobials for clinically drug-resistant isolates.  相似文献   
112.
To better guide microbial risk management and control, growth kinetic models of Salmonella with the coexistence of two other dominant background bacteria in pork were constructed. Sterilized pork cutlets were inoculated with a cocktail of Salmonella Derby (S. Derby), Pseudomonas aeruginosa (P. aeruginosa), and Escherichia coli (E. coli), and incubated at various temperatures (4–37 °C). The predictive growth models were developed based on the observed growth data. By comparing R2 of primary models, Baranyi models were preferred to fit the growth curves of S. Derby and P. aeruginosa, while the Huang model was preferred for E. coli (all R2 ≥ 0.997). The secondary Ratkowsky square root model can well describe the relationship between temperature and μmax (all R2 ≥ 0.97) or Lag (all R2 ≥ 0.98). Growth models were validated by the actual test values, with Bf and Af close to 1, and MSE around 0.001. The time for S. Derby to reach a pathogenic dose (105 CFU/g) at each temperature in pork was predicted accordingly and found to be earlier than the time when the pork began to be judged nearly fresh according to the sensory indicators. Therefore, the predictive microbiology model can be applied to more accurately predict the shelf life of pork to secure its quality and safety.  相似文献   
113.
A highly chemoselective conversion of α,β-disubstituted nitroalkenes to ketones is developed. An acid-compatible iridium catalyst serves as the key to the conversion. At a 2500 S/C ratio, nitroalkenes were readily converted to ketones in up to 72% isolated yields. A new mechanistic mode involving the reduction of nitroalkene to nitrosoalkene and N-alkenyl hydroxylamine is proposed. This conversion is ready to amplify to a gram-scale synthesis. The pH value plays an indispensable role in controlling the chemoselectivity.  相似文献   
114.
Three undescribed phenylpropanoid derivatives, including two new bibenzyl constituents (1–2), one new stilbene constituent (3), together with five known compounds stilbostemin F (4), dihydropinosylvin (5), 2-(4-hydroxyphenyl)ethyl benzoate (6), 1-(4-hydroxybenzoyl)ethanone (7), and 4-hydroxy-3-prenylbenzoic acid (8), were isolated from the tuber of Asparagus cochinchinensis. The structures of 1–8 were elucidated according to UV, IR, HRMS, 1D and 2D-NMR methods together with the published literature. All of the isolated compounds were assessed for anti-inflammatory activity by acting on lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells in vitro. The results showed that compounds 2 and 5 were found to inhibit the production of nitric oxide (NO) with the IC50 value of 21.7 and 35.8 µM, respectively. In addition, further studies found that compound 2 demonstrated concentration-dependent suppression of the protein expression of iNOS and exerted anti-inflammatory activity via the NF-κB signalling pathway. The present data suggest that phenylpropanoid derivatives from the tuber of A. cochinchinensis might be used as a potential source of natural anti-inflammatory agents.  相似文献   
115.
Cancer is one of the most common malignant diseases in the world. Hence, there is an urgent need to search for novel drugs with antitumor activity against cancer cells. AMP-17, a natural antimicrobial peptide derived from Musca domestica, has antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and fungi. However, its antitumor activity and potential mechanism of action in cancer cells remain unclear. In this study, we focused on evaluating the in vitro antitumor activity and mechanism of AMP-17 on leukemic K562 cells. The results showed that AMP-17 exhibited anti-proliferative activity on K562 cells with an IC50 value of 58.91 ± 3.57 μg/mL. The membrane integrity of K562 was disrupted and membrane permeability was increased after AMP-17 action. Further observation using SEM and TEM images showed that the cell structure of AMP-17-treated cells was disrupted, with depressions and pore-like breaks on the cell surface, and vacuolated vesicles in the cytoplasm. Furthermore, further mechanistic studies indicated that AMP-17 induced excessive production of reactive oxygen species and calcium ions release in K562 cells, which led to disturbance of mitochondrial membrane potential and blocked ATP synthesis, followed by activation of Caspase-3 to induce apoptosis. In conclusion, these results suggest that the antitumor activity of AMP-17 may be achieved by disrupting cell structure and inducing apoptosis. Therefore, AMP-17 is expected to be a novel potential agent candidate for leukemia treatment.  相似文献   
116.
Salicylic acid (SA) is a natural inducer of disease resistance in fruit, but its application in the food industry is limited due to low water solubility. Here, SA was encapsulated in β-cyclodextrin (β-CD) via the host–guest inclusion complexation method, and the efficacy of SA microcapsules (SAM) against blue mold caused by Penicillium expansum in postharvest apple fruit was elucidated. It was observed that SAM was the most effective in inhibiting the mycelial growth of P. expansum in vitro. SAM was also superior to SA for control of blue mold under in vivo conditions. Enzyme activity analysis revealed that both SA and SAM enhanced the activities of superoxide dismutase (SOD) and phenylalanine ammonia lyase (PAL) in apple fruit, whereas SAM led to higher SOD activities than SA. Total phenolic contents in the SAM group were higher than those in the SA group at the early stage of storage. SAM also improved fruit quality by retarding firmness loss and maintaining higher total soluble solids (TSS) contents. These findings indicate that microcapsules can serve as a promising formulation to load SA for increasing P. expansum inhibition activity and improving quality attributes in apple fruit.  相似文献   
117.
The treatment of organic pollutants in wastewater is becoming a great challenge for social development. Herein, a novel contact-piezoelectric bi-catalysis of a ZnO@ PVDF composite membrane was prepared by electrospinning technology. The obtained ZnO@PVDF composite membranes is superior to the pure PVDF membrane in decomposing methyl orange (MO) under ultrasonication at room temperature, which is mainly attributed to the synergy effect of the contact-electro-catalysis of dielectric PVDF, as well as the piezoelectric catalysis of tetrapodal ZnO and the β-phase of PVDF. The heterostructure of the piezoelectric-ZnO@dielectric-PVDF composite is beneficial in reducing the electron/hole pair recombination. As compared to the pure PVDF membrane, the catalytic degradation efficiency of the ZnO@PVDF composite membrane was improved by 444.23% under ultrasonication. Moreover, the reusability and stability of the composite membrane are comparable to those of the traditional powdered catalyst. This work offers a promising strategy for improving the pollutant degradation by combining contact-electro-catalysis with piezoelectric catalysis.  相似文献   
118.
Pickled radish (Raphanus sativus) is a traditional Asian ingredient, but the traditional method takes decades to make this product. To optimize such a process, this study compared the saponin content of pickled radishes with different thermal processing and traditional processes (production time of 7 days, 10 years, and 20 years) and evaluated the effects of different thermal processes on the formation of radish saponin through kinetics study and mass spectrometry. The results showed that increasing the pickling time enhanced the formation of saponin in commercial pickled radishes (25 °C, 7 days, 6.50 ± 1.46 mg g−1; 3650 days, 23.11 ± 1.22 mg g−1), but these increases were lower than those induced by thermal processing (70 °C 30 days 24.24 ± 1.01 mg g−1). However, it was found that the pickling time of more than 10 years and the processing temperature of more than 80 °C reduce the saponin content. Liquid chromatography–mass spectrometry (LC-MS) analysis showed that the major saponin in untreated radish was Tupistroside G, whereas treated samples contained Asparagoside A and Timosaponin A1. Moreover, this study elucidated the chemical structure of saponins in TPR. The findings indicated that thermal treatment could induce functional saponin conversion in plants, and such a mechanism can also be used to improve the health efficacy of plant-based crops.  相似文献   
119.
Gentamicin (GEN) is a kind of aminoglycoside antibiotic with the adverse effect of nephrotoxicity. Currently, no effective measures against the nephrotoxicity have been approved. In the present study, epigallocatechin gallate (EG), a useful ingredient in green tea, was used to attenuate its nephrotoxicity. EG was shown to largely attenuate the renal damage and the increase of malondialdehyde (MDA) and the decrease of glutathione (GSH) in GEN-injected rats. In NRK-52E cells, GEN increased the cellular ROS in the early treatment phase and ROS remained continuously high from 1.5 H to 24 H. Moreover, EG alleviated the increase of ROS and MDA and the decrease of GSH caused by GEN. Furthermore, EG activated the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). After the treatment of GEN, the protein level of cleaved-caspase-3, the flow cytometry analysis and the JC-1 staining, the protein levels of glutathione peroxidase 4 (GPX4) and SLC7A11, were greatly changed, indicating the occurrence of both apoptosis and ferroptosis, whereas EG can reduce these changes. However, when Nrf2 was knocked down by siRNA, the above protective effects of EG were weakened. In summary, EG attenuated GEN-induced nephrotoxicity by suppressing apoptosis and ferroptosis.  相似文献   
120.
Baijiu is a unique and traditional distilled liquor in China. Flavor plays a crucial rule in baijiu. Up to now, the research on the flavor of baijiu has progressed from the identification of volatile compounds to the research on key aroma compounds, but the release mechanism of these characteristic compounds is still unclear. Meanwhile, volatile compounds account for only a tiny fraction, whereas ethanol and water account for more than 98% of the content in baijiu. By summarizing the ethanol–water hydrogen bond structure in different alcoholic beverages, it was found that flavor compounds can affect the association strength of the ethanol–water hydrogen bond, and ethanol–water can also affect the interface distribution of flavor compounds. Therefore, the research on ethanol–water microstructure in baijiu is helpful to realize the simple visualization of adulteration detection, aging determination and flavor release mechanism analysis of baijiu, and further uncover the mystery of baijiu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号