Ovarian cancer is a leading cause of death in women. Early detection of ovarian cancer is essential to decrease mortality. However, the early diagnosis of ovarian cancer is difficult due to a lack of clinical symptoms and suitable molecular diagnostic markers. Thus, identification of meaningful tumor biomarkers with potential clinical application is clearly needed. To search for a biomarker for the early detection of ovarian cancer, we identified human anterior gradient 2 (AGR2) from our systematic analysis of paired normal and ovarian tumor tissue cDNA microarray. We noted a marked overexpression of AGR2 mRNA and protein in early stage mucinous ovarian tumors compared to normal ovarian tissues and serous type ovarian tumors by Western blot analysis and immunohistochemistry. To further elucidate the role of AGR2 in ovarian tumorigenesis, stable 2774 human ovarian cancer cell lines overexpressing AGR2 were established. Forced expression of AGR2 in 2774 cells enhanced the growth and migration of ovarian cancer cells. AGR2 protein was detected in the serum of mucinous ovarian cancer patients by Western blot and ELISA analysis. Thus, AGR2 is a potential biomarker for the diagnosis of mucinous ovarian cancer and an ELISA assay may facilitate the early detection of mucinous ovarian cancer using patient serum. 相似文献
Conducting polymers possess good conductivity, can be easily modified, have a particular redox activity. Noble metal nanomaterials, in turn, possess high conductivity, catalytic properties and large surface-to-volume ratios. Synergistic materials consisting of both conducting polymer and metal nanomaterial therefore are most useful materials for use in electrochemical immunosensors with improved sensitivity and specificity. This review (with 75 references) gives an overview on advances in conducting polymer based noble metal nanomaterial hybrids for amperometric immunoassay of the 13 most common tumor markers. The review is divided into the following sections: (1) Polyaniline based noble metal nanomaterial hybrids; (2) Polyaniline derivative-based noble metal nanomaterial hybrids; (3) Polypyrrole-based noble metal nanomaterial hybrids. A final section covers future perspectives regarding challenges on the design of electrochemical immunoassays.
Graphical abstract Advances on conducting polymer and noble metal nanomaterial hybrids for amperometric immunoassay of tumor marker are reviewed. Future perspectives regarding challenges on the construction of electrochemical immunosensing interface for tumor marker are discussed.
A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 102 to 3.0 × 104 cells mL−1, with a detection limit of 2.6 × 102 cells mL−1. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL−1. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes. 相似文献
A zeolite-based microengineered reactor was fabricated and tested for 1-pentene epoxidation over titanium silicalite-1 (TS-1) catalyst, which has been selectively incorporated within the microreactor channel using a new synthesis procedure. 相似文献
Recent studies have shown that circulating microRNAs are a potential biomarker in various types of malignancies. The aim of this study was to investigate the feasibility of using serum exosomal microRNAs as novel serological biomarkers for hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). We measured the serum exosomal microRNAs and serum circulating microRNAs in patients with CHB (n=20), liver cirrhosis (LC) (n=20) and HCC (n=20). Serum exosomal microRNA was extracted from 500 μl of serum using an Exosome RNA Isolation kit. The expression levels of microRNAs were quantified by real-time PCR. The expression levels of selected microRNAs were normalized to Caenorhabditis elegans microRNA (Cel-miR-39). The serum levels of exosomal miR-18a, miR-221, miR-222 and miR-224 were significantly higher in patients with HCC than those with CHB or LC (P<0.05). Further, the serum levels of exosomal miR-101, miR-106b, miR-122 and miR-195 were lower in patients with HCC than in patients with CHB (P=0.014, P<0.001, P<0.001 and P<0.001, respectively). There was no significant difference in the levels of miR-21 and miR-93 among the three groups. Additionally, the serum levels of circulating microRNAs showed a smaller difference between HCC and either CHB or LC. This study suggests that serum exosomal microRNAs may be used as novel serological biomarkers for HCC. 相似文献
The sulfur isotope is an important geochemical tracer in diverse fields of geosciences. In this study, the effects of three different cone combinations with the addition of N2 on the performance of in situ S isotope analyses were investigated in detail. The signal intensities of S isotopes were improved by a factor of 2.3 and 3.6 using the X skimmer cone combined with the standard sample cone or the Jet sample cone, respectively, compared with the standard arrangement (H skimmer cone combined with the standard sample cone). This signal enhancement is important for the improvement of the precision and accuracy of in situ S isotope analysis at high spatial resolution. Different cone combinations have a significant effect on the mass bias and mass bias stability for S isotopes. Poor precisions of S isotope ratios were obtained using the Jet and X cones combination at their corresponding optimum makeup gas flow when using Ar plasma only. The addition of 4–8 ml min−1 nitrogen to the central gas flow in laser ablation MC-ICP-MS was found to significantly enlarge the mass bias stability zone at their corresponding optimum makeup gas flow in these three different cone combinations. The polyatomic interferences of OO, SH, OOH were also significantly reduced, and the interference free plateaus of sulfur isotopes became broader and flatter in the nitrogen mode (N2 = 4 ml min−1). However, the signal intensity of S was not increased by the addition of nitrogen in this study. The laser fluence and ablation mode had significant effects on sulfur isotope fractionation during the analysis of sulfides and elemental sulfur by laser ablation MC-ICP-MS. The matrix effect among different sulfides and elemental sulfur was observed, but could be significantly reduced by line scan ablation in preference to single spot ablation under the optimized fluence. It is recommended that the d90 values of the particles in pressed powder pellets for accurate and precise S isotope analysis should be less than 10 μm. Under the selected optimized analytical conditions, excellent agreements between the determined values and the reference values were achieved for the IAEA-S series standard reference materials and a set of six well-characterized, isotopic homogeneous sulfide standards (PPP-1, MoS2, MASS-1, P-GBW07267, P-GBW07268, P-GBW07270), validating the capability of the developed method for providing high-quality in situ S isotope data in sulfides and elemental sulfur. 相似文献