首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   6篇
  国内免费   2篇
化学   80篇
力学   3篇
数学   1篇
物理学   23篇
  2023年   2篇
  2022年   16篇
  2021年   13篇
  2020年   8篇
  2019年   3篇
  2018年   10篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   9篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2002年   1篇
  1995年   1篇
  1994年   2篇
  1983年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
51.
Successfully optimized calculations for the stability of SnAlO3 perovskite in its paramagnetic phase and various structural parameters have been figured out in this study. Structural stability and ductile character is reflected from the calculated elastic constants and mechanical properties. Moreover, the melting temperature of the present material has also been calculated. We have discussed in detail, the ground state electronic band structure and paramagnetic character. In addition, the Boltzmann's transport theory has been employed to obtain the Seebeck, electrical and thermal conductivity coefficients so as to manifest the thermoelectric response of the material. Remarkably, the observed high electrical conductivity in inclusion of metallicity and paramagnetic nature is a characteristic of perovskite type electrode materials. The above discussed material properties suggest the possible application of this compound as an efficient electrode material.  相似文献   
52.
Luteolin (LUT) is a natural pharmaceutical compound that is weakly water soluble and has low bioavailability when taken orally. As a result, the goal of this research was to create self-nanoemulsifying drug delivery systems (SNEDDS) for LUT in an attempt to improve its in vitro dissolution and hepatoprotective effects, resulting in increased oral bioavailability. Using the aqueous phase titration approach and the creation of pseudo-ternary phase diagrams with Capryol-PGMC (oil phase), Tween-80 (surfactant), and Transcutol-HP (co-emulsifier), various SNEDDS of LUT were generated. SNEDDS were assessed for droplet size, polydispersity index (PDI), zeta potential (ZP), refractive index (RI), and percent of transmittance (percent T) after undergoing several thermodynamic stability and self-nanoemulsification experiments. When compared to LUT suspension, the developed SNEDDS revealed considerable LUT release from all SNEDDS. Droplet size was 40 nm, PDI was <0.3, ZP was −30.58 mV, RI was 1.40, percent T was >98 percent, and drug release profile was >96 percent in optimized SNEDDS of LUT. For in vivo hepatoprotective testing in rats, optimized SNEDDS was chosen. When compared to LUT suspension, hepatoprotective tests showed that optimized LUT SNEDDS had a substantial hepatoprotective impact. The findings of this investigation suggested that SNEDDS could improve bioflavonoid LUT dissolution rate and therapeutic efficacy.  相似文献   
53.
Bionanotechnology is a branch of science that has revolutionized modern science and technology. Nanomaterials, especially noble metals, have attracted researchers due to their size and application in different branches of sciences that benefit humanity. Metal nanoparticles can be synthesized using green methods, which are good for the environment, economically viable, and facilitate synthesis. Due to their size and form, gold nanoparticles have become significant. Plant materials are of particular interest in the synthesis and manufacture of theranostic gold nanoparticles (NPs), which have been generated using various materials. On the other hand, chemically produced nanoparticles have several drawbacks in terms of cost, toxicity, and effectiveness. A plant-mediated integration of metallic nanoparticles has been developed in the field of nanotechnology to overcome the drawbacks of traditional synthesis, such as physical and synthetic strategies. Nanomaterials′ tunable features make them sophisticated tools in the biomedical platform, especially for developing new diagnostics and therapeutics for malignancy, neurodegenerative, and other chronic disorders. Therefore, this review outlines the theranostic approach, the different plant materials utilized in theranostic applications, and future directions based on current breakthroughs in these fields.  相似文献   
54.
In the literature, greener analytical approaches for determining thymol in its commercial formulations, plant-based phytopharmaceuticals, and biological fluids are scarce. As a result, the goal of this study is to develop and validate a normal-phase “high-performance thin-layer chromatography (HPTLC)” method for determining thymol in commercial formulations, essential oils, traditional extracts (TE), and ultrasound-based extracts (UBE) of Thymus vulgaris and Origanum vulgare obtained from various geographical regions. The greener mobile phase for thymol analysis was a binary combination of cyclohexane and ethyl acetate (85:15, v/v). The derivatized densitometric analysis of thymol was carried out under visible mode at 530 nm utilizing anisaldehyde-sulfuric acid as a derivatizing/visualizing agent. In the 10–2000 ng/band range, the greener normal-phase HPTLC method was linear. Furthermore, for thymol analysis, the proposed analytical approach was simple, quick, inexpensive, accurate, precise, robust, sensitive, and greener. The thymol contents in commercial formulation were computed as 7.61% w/w. In general, the thymol contents were maximum in essential oils of T. vulgaris and O. vulgare compared to the other sample matrices studied. The thymol contents of TE of T. vulgaris and O. vulgare of different geographical regions were significantly low compared to their UBE extract. Using 12 distinct components of green analytical chemistry, the overall “analytical GREEnness (AGREE)” scale for the proposed analytical approach was computed 0.79, showing the good greener nature of the proposed analytical approach. Overall, the greener normal-phase HPTLC technique was found to be reliable for determining thymol in commercial formulations and plant-based phytopharmaceuticals.  相似文献   
55.
The solubility parameters, and solution thermodynamics of temozolomide (TMZ) in 10 frequently used solvents were examined at five different temperatures. The maximum mole fraction solubility of TMZ was ascertained in dimethyl sulfoxide (1.35 × 10−2), followed by that in polyethylene glycol-400 (3.32 × 10−3) > Transcutol® (2.89 × 10−3) > ethylene glycol (1.64 × 10−3) > propylene glycol (1.47 × 10−3) > H2O (7.70 × 10−4) > ethyl acetate (5.44 × 10−4) > ethanol (1.80 × 10−4) > isopropyl alcohol (1.32 × 10−4) > 1-butanol (1.07 × 10−4) at 323.2 K. An analogous pattern was also observed for the other investigated temperatures. The quantitated TMZ solubility values were regressed using Apelblat and Van’t Hoff models and showed overall deviances of 0.96% and 1.33%, respectively. Apparent thermodynamic analysis indicated endothermic, spontaneous, and entropy-driven dissolution of TMZ in all solvents. TMZ solubility data may help to formulate dosage forms, recrystallize, purify, and extract/separate TMZ.  相似文献   
56.

No high-performance thin-layer chromatography (HPTLC) techniques have been established for the determination of tedizolid phosphate (TDZP) in pharmaceutical products or physiological fluids. Therefore, a rapid and highly sensitive stability-indicating HPTLC technique has been developed for the determination of TDZP in commercial formulations with a classical univariate calibration. The HPTLC‒densitometry analysis of TDZP was carried out via chloroform‒methanol (90:10, V/V) mobile phase. The determination of TDZP was performed at the wavelength of 300 nm. The proposed HPTLC technique was linear in the range of 10‒2000 ng band‒1. In addition, the method was found to be highly accurate (% recovery = 98.53‒101.74%), precise (%CV = 0.67‒0.91%), robust (%CV = 0.83‒0.86%), highly sensitive (LOD = 3.41 ng band‒1, LOQ = 10.23 ng band‒1) for the determination of TDZP. The proposed technique was also able to detect TDZP in the presence of its degradation products under various stress conditions and it can be considered as a stability-indicating method. The proposed HPTLC technique was applied for the analysis of TDZP in its commercial formulations. The TDZP contents of commercial tablets and injection were determined as 98.41% and 101.23%, respectively. These results suggested that the proposed HPTLC technique can be applied for the routine analysis of TDZP in its commercial products and newly established formulations.

  相似文献   
57.
Journal of Radioanalytical and Nuclear Chemistry - Radiation exposure, an inescapable share of our everyday life, primarily arises from terrestrial or cosmic sources. A small fragment of the total...  相似文献   
58.
Canagliflozin (CNZ) is the first sodium–glucose co-transporter-2 inhibitor approved for treatment of type 2 diabetes mellitus. In the proposed work, a sensitive, rapid and validated high-performance thin-layer chromatography (HPTLC) method was established for the estimation of CNZ in human plasma for the first time. HPTLC analysis of CNZ and internal standard (sildenafil) was performed on glass coated silica gel 60 F254 HPTLC plates using a binary mixture of chloroform–methanol 9:1 (%, v/v) as the mobile phase. Densitometric detection was done at 295 nm. Retardation factor values were obtained as 0.22 and 0.52 for the CNZ and the IS, respectively. The linearity range of CNZ was obtained as 200–3,200 ng/ml. A simple protein precipitation method was used for the extraction of analyte from plasma using methanol. The proposed HPTLC technique was validated for linearity, accuracy, precision and robustness. The proposed HPTLC technique was successfully utilized for the assessment of pharmacokinetic profile of CNZ in rats after oral administration. After oral administration, the peak plasma concentration of CNZ was obtained as 1458.01 ng/ml in 2 h. The proposed HPTLC method could be applied to the study of the pharmacokinetic profile of pharmaceutical formulations containing CNZ.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号