首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   24篇
  国内免费   12篇
化学   332篇
晶体学   4篇
力学   11篇
数学   16篇
物理学   102篇
  2024年   4篇
  2023年   10篇
  2022年   48篇
  2021年   29篇
  2020年   27篇
  2019年   13篇
  2018年   16篇
  2017年   18篇
  2016年   34篇
  2015年   17篇
  2014年   15篇
  2013年   36篇
  2012年   33篇
  2011年   25篇
  2010年   22篇
  2009年   22篇
  2008年   13篇
  2007年   13篇
  2006年   9篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   6篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1987年   3篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   6篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1969年   4篇
  1968年   7篇
  1966年   1篇
  1965年   1篇
排序方式: 共有465条查询结果,搜索用时 15 毫秒
101.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 μM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 μM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinoline-thiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer’s disease.  相似文献   
102.
Traditionally, medicinal plants have long been used as a natural therapy. Plant-derived extracts or phytochemicals have been exploited as food additives and for curing many health-related ailments. The secondary metabolites produced by many plants have become an integral part of human health and have strengthened the value of plant extracts as herbal medicines. To fulfil the demand of health care systems, food and pharmaceutical industries, interest in the cultivation of precious medicinal plants to harvest bio-active compounds has increased considerably worldwide. To achieve maximum biomass and yield, growers generally apply chemical fertilizers which have detrimental impacts on the growth, development and phytoconstituents of such therapeutically important plants. Application of beneficial rhizosphere microbiota is an alternative strategy to enhance the production of valuable medicinal plants under both conventional and stressed conditions due to its low cost, environmentally friendly behaviour and non-destructive impact on fertility of soil, plants and human health. The microbiological approach improves plant growth by various direct and indirect mechanisms involving the abatement of various abiotic stresses. Given the negative impacts of fertilizers and multiple benefits of microbiological resources, the role of plant growth promoting rhizobacteria (PGPR) in the production of biomass and their impact on the quality of bio-active compounds (phytochemicals) and mitigation of abiotic stress to herbal plants have been described in this review. The PGPR based enhancement in the herbal products has potential for use as a low cost phytomedicine which can be used to improve health care systems.  相似文献   
103.
Previous studies have reported that recombinant tumor necrosis factor (TNF)-α has powerful antiviral activity but severe systematic side effects. Jasminin is a common bioactive component found in Chinese herbal medicine beverage “Jasmine Tea”. Here, we report that jasminin-induced endogenous TNF-α showed antiviral activity in vitro. The underlying TNF-α-inducing action of jasminin was also investigated in RAW264.7 cells. The level of endogenous TNF-α stimulated by jasminin was first analyzed by an enzyme-linked immunosorbent assay (ELISA) from the cell culture supernatant of RAW264.7 cells. The supernatants were then collected to investigate the potential antiviral effect against herpes simplex virus 1 (HSV-1). The antiviral effects of jasminin alone or its supernatants were evaluated by a plaque reduction assay. The potential activation of the PI3K–Akt pathway, three main mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)–κB signaling pathways that induce TNF-α production were also investigated. Jasminin induces TNF-α protein expression in RAW264.7 cells without additional stimuli 10-fold more than the control. No significant up-expression of type I, II, and III interferons; interleukins 2 and 10; nor TNF-β were observed by the jasminin stimuli. The supernatants, containing jasminin-induced-TNF-α, showed antiviral activity against HSV-1. The jasminin-stimulated cells caused the simultaneous activation of the Akt, MAPKs, and NF–κB signal pathways. Furthermore, the pretreatment of the cells with the Akt, MAPKs, and NF–κB inhibitors effectively suppressed jasminin-induced TNF-α production. Our research provides evidence that endogenous TNF-α can be used as a strategy to encounter viral infections. Additionally, the Akt, MAPKs, and NF–κB signaling pathways are involved in the TNF-α synthesis that induced by jasminin.  相似文献   
104.
(1) Background: Gastric cancer (GC) is the fourth leading cause of cancer-related deaths worldwide. Helicobacter pylori infection is a major risk factor, but other microbial species may also be involved. In the context of an earlier proteomics study of serum and biopsies of patients with gastroduodenal diseases, we explored here a simplified microbiome in these biopsies (H. pylori, Acinetobacter baumannii, Escherichia coli, Fusobacterium nucleatum, Bacteroides fragilis) on the protein level. (2) Methods: A cohort of 75 patients was divided into groups with respect to the findings of the normal gastric mucosa (NGM) and gastroduodenal disorders such as gastritis, ulcer, and gastric cancer (GC). The H. pylori infection status was determined. The protein expression analysis of the biopsy samples was carried out using high-definition mass spectrometry of the tryptic digest (label-free data-independent quantification and statistical analysis). (3) Results: The total of 304 bacterial protein matches were detected based on two or more peptide hits. Significantly regulated microbial proteins like virulence factor type IV secretion system protein CagE from H. pylori were found with more abundance in gastritis than in GC or NGM. This finding could reflect the increased microbial involvement in mucosa inflammation in line with current hypotheses. Abundant proteins across species were heat shock proteins and elongation factors. (4) Conclusions: Next to the bulk of human proteins, a number of species-specific bacterial proteins were detected in stomach biopsies of patients with gastroduodenal diseases, some of which, like those expressed by the cag pathogenicity island, may provide gateways to disease prevention without antibacterial intervention in order to reduce antibiotic resistance.  相似文献   
105.
Coronopus didymus (Brassicaceae) commonly known as lesser swine cress has been reported to be used for its pharmacological activities. This study aimed to evaluate the medicinal potential of C. didymus extracts against cancer, diabetes, infectious bacteria and oxidative stress and the identification of bioactive compounds present in these extracts. The effects of using different solvents for the extraction of C. didymus on the contents of major polyphenols and biological activities were investigated. Plant sample was shade dried, ground to a fine powder, and then soaked in pure acetone, ethanol and methanol. The highest contents of major polyphenols were found in methanol-based extract, i.e., chlorogenic acid, HB acid, kaempferol, ferulic acid, quercetin and benzoic acid with 305.02, 12.42, 11.5, 23.33, 975.7 and 428 mg/g of dry weight, respectively, followed by ethanol- and acetone-based extracts. The methanol-based extract also resulted in the highest antioxidant activities (56.76%), whereas the highest antiproliferative (76.36) and alpha glucosidase inhabitation (96.65) were demonstrated in ethanol-based extracts. No antibacterial property of C. didymus was observed against all the tested strains of bacteria. Further studies should be focused on the identification of specific bioactive compounds responsible for pharmacological activities.  相似文献   
106.
Background: Europinidin is a derivative of delphinidin obtained from the plants Plumbago Europea and Ceratostigma plumbaginoides. This herb has wide medicinal applications in treating various diseases but there are very few studies available on this bioactive compound. Considering this background, the present study is designed for the evaluation of Europinidin against Parkinson’s disease. Aim: The investigation aims to assess the effect of Europinidin in the rotenone-activated Parkinson’s paradigm. Methods: To evaluate neuroprotective activity, rotenone (1.5 mg/kg s.c) and europinidin (10 mg/kg and 20 mg/kg) was administered in rats for 21 days. The behavioural parameters were performed before sacrificing the rats. On the 22nd day, all the rats were assessed for biochemical markers (SOD, GSH, MDA, Catalase), neurotransmitter levels (Dopamine, 5-HIAA, DOPAC, and HVA levels), and neuroinflammatory markers (IL-6, IL-1β and TNF-α). Results: It was found that rotenone produced significant (p < 0.001) oxidative damage, a cholinergic deficit, dopaminergic loss, and a rise in neuroinflammatory markers in rats. Conclusion: The study concludes that europinidin possesses anti-oxidant and anti-inflammatory properties. The results suggest the therapeutic role of europinidin against rotenone-activated behavioural, biochemical, and neuroinflammatory alterations in rats.  相似文献   
107.
Myostatin (MSTN), a negative regulator of muscle mass, is reported to be increased in conditions linked with muscle atrophy, sarcopenia, and other muscle-related diseases. Most pharmacologic approaches that treat muscle disorders are ineffective, emphasizing the emergence of MSTN inhibition. In this study, we used computational screening to uncover natural small bioactive inhibitors from the Traditional Chinese Medicine database (~38,000 compounds) for the MSTN protein. Potential ligands were screened, based on binding affinity (150), physicochemical (53) and ADMET properties (17). We found two hits (ZINC85592908 and ZINC85511481) with high binding affinity and specificity, and their binding patterns with MSTN protein. In addition, molecular dynamic simulations were run on each complex to better understand the interaction mechanism of MSTN with the control (curcumin) and the hit compounds (ZINC85592908 and ZINC85511481). We determined that the hits bind to the active pocket site (Helix region) and trigger conformational changes in the MSTN protein. Since the stability of the ZINC85592908 compound was greater than the MSTN control, we believe that ZINC85592908 has therapeutic potential against the MSTN protein and may hinder downstream singling by inhibiting the MSTN protein and increasing myogenesis in the skeletal muscle tissues.  相似文献   
108.
Present research was planned to assess the in vitro and in vivo anti-arthritic potential of Caralluma tuberculata N. E. Brown. methanolic (CTME) and aqueous (CTAQ) extracts. Chemical characterization was done by high-performance liquid chromatography and gas chromatography–mass spectrometry analysis. The Complete Freund’s Adjuvant (CFA) was injected in left hind paw of rat at day 1 and dosing at 150, 300 and 600 mg/kg was started on the 8th day via oral gavage in all groups except normal and disease control rats (which were given distilled water), whereas methotrexate (intraperitoneal; 1 mg/kg/mL) was administered to standard control. The CTME and CTAQ exerted significant (p < 0.01–0.0001) in vitro anti-arthritic action. Both extracts notably reduced paw edema, and restored weight loss, immune organs weight, arthritic score, RBCs, ESR, platelet count, rheumatoid factor (RF), C-reactive protein, and WBCs in treated rats. The plant extracts showed significant (p < 0.05–0.0001) downregulation of tumor necrosis factor-α, Interleukin-6, -1β, NF-κB, and cyclooxygenase-2, while notably upregulated IL-4, IL-10, I-κBα in contrast to disease control rats. The plant extracts noticeably (p < 0.001–0.0001) restored the superoxide dismutase and catalase activities and MDA levels in treated rats. Both extracts exhibited significant anti-arthritic potential. The promising potential was exhibited by both extracts probably due to phenolic, and flavonoids compounds.  相似文献   
109.
Electrochemical CO2 reduction reaction (CO2RR) over Cu catalysts exhibits enormous potential for efficiently converting CO2 to ethylene (C2H4). However, achieving high C2H4 selectivity remains a considerable challenge due to the propensity of Cu catalysts to undergo structural reconstruction during CO2RR. Herein, we report an in situ molecule modification strategy that involves tannic acid (TA) molecules adaptive regulating the reconstruction of a Cu-based material to a pathway that facilitates CO2 reduction to C2H4 products. An excellent Faraday efficiency (FE) of 63.6 % on C2H4 with a current density of 497.2 mA cm−2 in flow cell was achieved, about 6.5 times higher than the pristine Cu catalyst which mainly produce CH4. The in situ X-ray absorption spectroscopy and Raman studies reveal that the hydroxyl group in TA stabilizes Cuδ+ during the CO2RR. Furthermore, theoretical calculations demonstrate that the Cuδ+/Cu0 interfaces lower the activation energy barrier for *CO dimerization, and hydroxyl species stabilize the *COH intermediate via hydrogen bonding, thereby promoting C2H4 production. Such molecule engineering modulated electronic structure provides a promising strategy to achieve highly selective CO2 reduction to value-added chemicals.  相似文献   
110.
The synthesis of MMT and poly(o-anisidine) (MMT/POA) clay nanocomposites was carried out by using the chemical oxidative polymerization of POA and MMT clay with POA, respectively. By maintaining the constant concentration of POA, different percentage loads of MMT clay were used to determine the effect of MMT clay on the properties of POA. The interaction between POA and MMT clay was investigated by FTIR spectroscopy, and, to reveal the complete compactness and homogeneous distribution of MMT clay in POA, were assessed by using scanning-electron-microscope (SEM) analysis. The UV–visible spectrum was studied for the optical and absorbance properties of MMT/POA ceramic nanocomposites. Furthermore, the horizontal burning test (HBT) demonstrated that clay nanofillers inhibit POA combustion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号