首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   10篇
化学   221篇
晶体学   4篇
力学   4篇
数学   14篇
物理学   62篇
  2024年   8篇
  2023年   3篇
  2022年   4篇
  2021年   20篇
  2020年   8篇
  2019年   11篇
  2018年   13篇
  2017年   9篇
  2016年   15篇
  2015年   11篇
  2014年   8篇
  2013年   18篇
  2012年   21篇
  2011年   22篇
  2010年   21篇
  2009年   15篇
  2008年   8篇
  2007年   11篇
  2006年   11篇
  2005年   11篇
  2004年   8篇
  2003年   14篇
  2002年   9篇
  2001年   1篇
  2000年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1975年   1篇
排序方式: 共有305条查询结果,搜索用时 187 毫秒
51.
Trapped ion mobility spectrometry–time-of-flight mass spectrometry (TIMS-TOFMS) has emerged as a tool to study protein conformational states. In TIMS, gas-phase ions are guided across the IM stages by applying direct current (DC) potentials (D1–6), which, however, might induce changes in protein structures through collisional activation. To define conditions for native protein analysis, we evaluated the influence of these DC potentials using the metalloenzyme bovine carbonic anhydrase (BCA) as primary test compound. The variation of DC potentials did not change BCA-ion charge and heme content but affected (relative) charge-state intensities and adduct retention. Constructed extracted-ion mobilograms and corresponding collisional cross-section (CCS) profiles gave useful insights in (alterations of) protein conformational state. For BCA, the D3 and D6 potential (which are applied between the deflection transfer and funnel 1 [F1] and the accumulation exit and the start of the ramp, respectively) had most profound effects, showing multimodal CCS distributions at higher potentials indicating gradual unfolding. The other DC potentials only marginally altered the CCS profiles of BCA. To allow for more general conclusions, five additional proteins of diverse molecular weight and conformational stability were analyzed, and for the main protein charge states, CCS profiles were constructed. Principal component analysis (PCA) of the obtained data showed that D1 and D3 exhibit the highest degree of correlation with the ratio of folded and unfolded protein (F/U) as extracted from the mobilograms obtained per set D potential. The correlation of D6 with F/U and protein charge were similar, and D2, D4, and D5 showed an inverse correlation with F/U but were correlated with protein charge. Although DC boundary values for induced conformational changes appeared protein dependent, a set of DC values could be determined, which assured native analysis of most proteins.  相似文献   
52.
A rare alkaloid, shahidine (1), having an unstable oxazoline core has been isolated as a major constituent from the fresh leaves of Aegle marmelos. It is moisture-sensitive, and found to be the parent compound of aegeline and other amides, however, it is stable in dimethyl sulfoxide. Its structure was established by spectroscopic analysis. Biogenetically, oxazolines may be considered as the precursor of hydroxy amides and oxazoles found in plants. Shahidine (1) showed activity against a few Gram-positive bacteria.  相似文献   
53.
This paper introduces a Grammar-based Genetic Programming Hyper-Heuristic framework (GPHH) for evolving constructive heuristics for timetabling. In this application GP is used as an online learning method which evolves heuristics while solving the problem. In other words, the system keeps on evolving heuristics for a problem instance until a good solution is found. The framework is tested on some of the most widely used benchmarks in the field of exam timetabling and compared with the best state-of-the-art approaches. Results show that the framework is very competitive with other constructive techniques, and did outperform other hyper-heuristic frameworks on many occasions.  相似文献   
54.
The main purpose of this article is to present a mathematical model of ciliary motion in an annulus. In this analysis, the peristaltic motion of non-Newtonian Jeffrey six constant fluid is observed in an annulus with ciliated tips in the presence of heat and mass transfer. The effects of viscous dissipation are also considered. The flow equations of non-Newtonian fluid for the two-dimensional tube in cylindrical coordinates are simplified using the low Reynolds number and long wave-length approximations. The main equations for Jeffrey six constant fluid are considered in cylindrical coordinates system. The resulting nonlinear problem is solved using the regular perturbation technique in terms of a variant of small dimensionless parameter α. The results of the solutions for velocity, temperature and concentration field are presented graphically. Bk is Brinkman number, ST is soret number, and SH is the Schmidth number. Outcome for the longitudinal velocity, pressure rise, pressure gradient and stream lines are represented through graphs. In the history, the viscous-dissipation effect is usually represented by the Brinkman number.  相似文献   
55.
A graft copolymerization was performed using free radical initiating process to prepare the poly(methyl acrylate) grafted copolymer from the tapioca cellulose. The desired material is poly(hydroxamic acid) ligand, which is synthesized from poly(methyl acrylate) grafted cellulose using hydroximation reaction. The tapioca cellulose, grafted cellulose and poly(hydroxamic acid) ligand were characterized by Infrared Spectroscopy and Field Emission Scanning Electron Microscope. The adsorption capacity with copper was found to be good, 210 mg g?1 with a faster adsorption rate (t1/2 = 10.5 min). The adsorption capacities for other heavy metal ions were also found to be strong such as Fe3+, Cr3+, Co3+ and Ni2+ were 191, 182, 202 and 173 mg g?1, respectively at pH 6. To predict the adsorption behavior, the heavy metal ions sorption onto ligand were well-fitted with the Langmuir isotherm model (R2 > 0.99), which suggest that the cellulose-based adsorbent i.e., poly(hydroxamic acid) ligand surface is homogenous and monolayer. The reusability was checked by the sorption/desorption process for six cycles and the sorption and extraction efficiency in each cycle was determined. This new adsorbent can be reused in many cycles without any significant loss in its original removal performances.  相似文献   
56.
The application of nanomaterials has gained considerable momentum in various fields in recent years due to their high reactivity, excellent surface properties and quantum effects in the nanometer range. The properties of zinc oxide (ZnO) vary with its crystallite size or particle size and often nanocrystalline ZnO is seen to exhibit superior physical and chemical properties due to their higher surface area and modified electronic structure. ZnO nanoparticles are reported to exhibit strong bacterial inhibiting activity and silver (Ag) has been extensively used for its antimicrobial properties since ages. In this study, Ag doped ZnO nanoparticles were synthesized by mechanochemical processing in a high energy ball mill and investigated for antimicrobial activity. The nanocrystalline nature of zinc oxide was established by X-ray diffraction (XRD) studies. It is seen from the XRD data obtained from the samples, that crystallite size of the zinc oxide nanoparticles is seen to decrease with increasing Ag addition. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) data also supported the nanoparticle formation during the synthesis. The doped nanoparticles were subjected to antimicrobial investigation and found that both increase in Ag content and decrease in particle size contributed significantly towards antimicrobial efficiency. It was also observed that Ag doped ZnO nanoparticles possess enhanced antimicrobial potential than that of virgin ZnO against the studied microorganisms of Escherichia coli and Staphylococcus aureus.  相似文献   
57.
The thermal decompositions of pure and mixed manganese carbonate and ammonium molybdate tetrahydrate in molar ratios of 3:1, 1:1 and1:3 were studied by DTA and TG techniques. The prepared mixed solid samples were calcined in air at 500, 750 or 1000°C and then investigated by means of an XRD technique. The results revealed that manganese carbonate decomposed in the range 300–1000°C, within termediate formation of MnO2, Mn2O3 andMn3O4. Ammonium molybdate tetrahydrate first lost its water of crystallization on heating, and then decomposed, yielding water and ammonia. At 340°C,MoO3 was the final product, which melts at 790°C. The thermal treatment of the mixed solids at 500, 750 or 1000°C led to solid-solid interactions between the produced oxides, with the formation of manganese molybdate. At 1000°C, Mn2O3 and MoO3 were detected, due to the mutual stabilization effect of these oxides at this temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
58.
The title selenenyl halide complex, 3‐iodo‐2‐phenyl‐3H‐3‐selenaindazole, C12H9IN2Se, has an almost planar conformation and a nearly ideal T‐shape for the Se(INC) moiety [Se—I 2.8122 (12), Se—C 1.881 (7) and Se—N2 2.051 (6) Å; C—Se—N 79.6 (3), C—Se—I 96.8 (2) and N—Se—I 176.17 (17)°]. This arrangement, together with the two selenium lone pairs, leads to a distorted trigonal‐bipyrimidal geometry about the Se atom. Intermolecular interactions are largely limited to stacking forces.  相似文献   
59.
We demonstrate a facile efficient way to fabricate activated carbon nanosheets (ACNSs) consisting of hierarchical porous carbon materials. Simply heating banana leaves with K2CO3 produce ACNSs having a unique combination of macro-, meso- and micropores with a high specific surface area of ∼1459 m2 g−1. The effects of different electrolytes on the electrochemical supercapacitor performance and stability of the ACNSs are tested using a two-electrode system. The specific capacitance (Csp) values are 55, 114, and 190 F g−1 in aqueous 0.5 M sodium sulfate, organic 1 M tetraethylammonium tetrafluoroborate in acetonitrile, and pure ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) electrolytes, respectively. The ACNSs also shows the largest potential window of 3.0 V, the highest specific energy (59 Wh kg−1) and specific power (750 W kg−1) in [BMIM][PF6]. A mini-prototype device is prepared to demonstrate the practicality of the ACNSs.  相似文献   
60.
In this work, a new class of totally organic fluorescent nanogel particles and their exceptionally specific behaviors based on their unique structures are introduced, which draws a sharp line from conventional fluorophore-doped and fluorophore-branched-type particles. The nanogel particles, the diameter of which could be controlled by adjusting reaction conditions, such as the solvent system, were spontaneously fabricated with a spherical shape by direct polymerization of non-heterocyclic aromatic compounds, such as 2,6-dihydroxyanthracene, 2,6-dihydroxynaphthalene, and 9,9-bis(4-hydroxyphenyl)fluorene with triazinane as the cross-linker. A fluorophoric moiety formed from a polymer main chain was realized in the particle, and consequently, the resultant content of the fluorophoric moiety was around 70–80 wt % per particle. The uniqueness and versatility of the particles can be emphasized by their good compatibility with various solvents due to their amphiphilic and ampholytic swelling properties, but also by their remarkable fluorescent solvatochromism in the dispersion state. Furthermore, these behaviors were preserved even in their polymer composite system. This study also demonstrates that various fluorescent polymer films can be fabricated with emission color control due to memorization of the solvatochromism phenomenon of the dispersed fluorescent nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号