首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   815篇
  免费   33篇
  国内免费   10篇
化学   550篇
晶体学   1篇
力学   70篇
数学   103篇
物理学   134篇
  2023年   8篇
  2022年   19篇
  2021年   27篇
  2020年   46篇
  2019年   46篇
  2018年   41篇
  2017年   42篇
  2016年   54篇
  2015年   28篇
  2014年   47篇
  2013年   80篇
  2012年   72篇
  2011年   70篇
  2010年   50篇
  2009年   31篇
  2008年   41篇
  2007年   34篇
  2006年   27篇
  2005年   19篇
  2004年   12篇
  2003年   18篇
  2002年   11篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有858条查询结果,搜索用时 156 毫秒
81.
Pervaporation (PV) separation of water–acetonitrile mixture using sodium alginate (NaAlg) based mixed matrix membranes (MMM) comprising different amounts of nano NaA zeolite (10, 20 and 30 wt%) is investigated in various concentrations of water and temperatures. The prepared membranes are modified by sulfosuccinic acid (SSA) as a crosslinking agent. NaAlg-NaA/SSA membranes are synthesized by a solution casting technique. The process and membrane performance including separation factor, flux and activation energy of permeation are determined. Results reveal that adding of nano zeolite may lead to an increase in the flux and the separation factor of sodium alginate membrane up to 123 and 169%. In addition, using MMM in dehydration of a feed containing 30 wt% of water shows much better performance than alginate membrane. Furthermore, the activation energy of water permeation through MMM is predicted lower than sodium alginate membrane which reflects the facilitated permeation of water through MMM.  相似文献   
82.
The carbon dioxide reforming of methane to synthesis gas under DC-pulsed plasma was investigated. The effects of specific input energy and feed ratio on the product distribution and also feed conversion was studied. At the input energy of about 11 eV/molecule per methane and/or carbon dioxide the feed conversion of 38% for CH4 and 28% for CO2 and product selectivity of 74% has been attained for H2 and CO at feed flow rate of 90 ml/min. The energy consumption in this work displays potential to further study and optimization of the process. The importance of the electron impact reactions in the process was discussed. The results show that by prudent tuning of system variables, the process be able to run in the way of synthesis gas, instead of hydrocarbon production.  相似文献   
83.
Changes in the thermal conductivities of paraffin and mono ethylene glycol (MEG) as a function of β-SiC nanoparticle concentration and size was studied. An enhancement in the effective thermal conductivity was found for both fluids (i.e., both paraffin and MEG) upon the addition of nanoparticles. Although an enhancement in thermal conductivity was found, the degree of enhancement depended on the nanoparticle concentration in a complex way. An increase in particle-to-particle interactions is thought to be the cause of the enhancement. However, the enhancement became muted at higher particle concentrations compared to lower ones. This phenomenon can be related to nanoparticles interactions. An improvement in the thermal conductivities for both fluids was also found as the nanoparticle size shrank. It is believed that the larger Brownian motion for smaller particles causes more particle-to-particle interactions, which, in turn, improves the thermal conductivity. The role that the base-fluid plays in the enhancement is complex. Lower fluid viscosities are believed to contribute to greater enhancement, but a second effect, the interaction of the fluid with the nanoparticle surface, can be even more important. Nanoparticle-liquid suspensions generate a shell of organized liquid molecules on the particle surface. These organized molecules more efficiently transmit energy, via phonons, to the bulk of the fluid. The efficient energy transmission results in enhanced thermal conductivity. The experimentally measured thermal conductivities of the suspensions were compared to a variety of models. None of the models proved to adequately predict the thermal conductivities of the nanoparticle suspensions.  相似文献   
84.
A study concerned to thermogravimetric analysis is performed in cesium dihydrogen phosphate (CsH2PO4) that was synthesized, using cetyltrimethylammonium-bromide (CTAB), polyoxyethylene-polyoxypropylene (F-68) and mixture of (F-68:CTAB) with two mole ratio 0.06 and 0.12 as surfactant. The dehydration behavior of particles was studied using thermal gravimetric analysis and differential scanning calorimetric. Subsequently, the experimental results indicated that the first dehydration temperature in the range of 237–239 °C upon heating, the second peaks occur at temperature range 290–295 °C and overlapping in the thermogravimetric events is observed. The mass loss values are obtained in the range of 6.62–6.97 wt% that is less than reported theoretical value 7.8 wt%. These values show well compatibility of reaction CsH2PO4 to Cs2H2P2O7 with 3.92 wt% whereas mass loss value of CsH2PO4 to CsPO3 is less than theoretical value 7.8 wt%. The activation energy of two steps dehydration are calculated using Kissinger equation for the samples synthesized via CTAB and (F-68) with minimum value mass loss 6.62% and maximum value mass loss 6.97%, respectively. The calculation results reveal that the reaction rate in the first step (CsH2PO4 → Cs2H2P2O7) is faster than the second step (CsH2PO4 → CsPO3). The weight loss values of the samples demonstrate that existence of CTAB can be considered as effective factor which prevents more weight loss during the dehydration process.  相似文献   
85.
Immobilization of lead contamination in soils by precipitation of non-assimilable for plants Pb-phosphate was considered. Glassy fertilizer of controlled release rate of the nutrients for plants as a source of phosphate anions was applied. Thermal analysis methods (TG/DTG/DTA) were used for the identification of components of Pb-precipitate, which being in statu nascendi have nonstoichiometric composition and disordered crystallographic structure difficult to identify by XRD method. Application of TA methods permits to demonstrate the negative role of Pb complexing citric acid solution simulating the natural soil conditions, which inhibits the Pb-phosphate of pyromorphite type formation.  相似文献   
86.
A carbon past electrode modified with [Mn(H2O)(N3)(NO3)(pyterpy)], ( \textpyterpy = 4¢- ( 4 - \textpyridyl ) - 2,2¢:\text6¢,\text2¢¢- \textterpyridine ) \left( {{\text{pyterpy}} = 4\prime - \left( {4 - {\text{pyridyl}}} \right) - 2,2\prime:{\text{6}}\prime,{\text{2}}\prime\prime - {\text{terpyridine}}} \right) complex have been applied to the electrocatalytic oxidation of nitrite which reduced the overpotential by about 120 mV with obviously increasing the current response. Relative standard deviations for nitrite determination was less than 2.0%, and nitrite can be determined in the ranges of 5.00 × 10−6 to 1.55 × 10−2 mol L−1, with a detection limit of 8 × 10−7 mol L−1. The treatment of the voltammetric data showed that it is a pure diffusion-controlled reaction, which involves one electron in the rate-determining step. The rate constant k′, transfer coefficient α for the catalytic reaction, and diffusion coefficient of nitrite in the solution, D, were found to be 1.4 × 10−2, 0.56× 10−6, and 7.99 × 10−6 cm2 s−1, respectively. The mechanism for the interaction of nitrite with the Mn(II) complex modified carbon past electrode is proposed. This work provides a simple and easy approach to detection of nitrite ion. The modified electrode indicated reproducible behavior, anti-fouling properties, and stability during electrochemical experiments, making it particularly suitable for the analytical purposes.  相似文献   
87.
An efficient and practical protocol for the chemoselective N-Boc protection of various structurally different aryl, aliphatic and heterocyclic amines was carried out with (Boc)2O using protic 1, 1, 3, 3-tetra-methylguanidinium acetate (10 mol%) as recyclable catalyst under solvent free condition at ambient temperature. No competitive side reactions (isocyanate, urea and N, N-di-Boc) were observed. α-Amino alcohols afforded the N-Boc-derivative without oxazolidinone formation.  相似文献   
88.
A novel and simple fluorescence enhancement method for selective pyrophosphate(PPi) sensing was proposed based on a 1:1 metal complex formation between bis(8-hydroxy quinoline-5-solphonat) chloride aluminum(III) (Al(QS)2Cl), (L) and PPi in aqueous solution. The linear response range covers a concentration range of 1.6 × 10−7 to 1.0 × 10−5 mol/L of PPi and the detection limit of 2.3 × 10−8 mol/L. The association constant of L-PPi complex was calculated 2.6 × 105 L/mol. L was found to show selectively and sensitively fluorescence enhancement toward PPi over than I3-, NO3-, CN, CO32−, Br, Cl, F, H2PO4 and SO42−, which was attributed to higher stability of inorganic complex between pyrophosphate and L.  相似文献   
89.
In this paper, an adaptive output error feedback control scheme is proposed for the lag-synchronization of two time-delayed chaotic systems in the presence of channel time-delay, external disturbances and input nonlinearity. Using the Lyapunov theory, stability of the proposed adaptive controller is proved. Lyapunov-Krasovskii approach is used to deal with the existence of time-delay in the system dynamics. Finally, two numerical simulations are presented to illustrate the effectiveness of the developed method.  相似文献   
90.
Coir fiber from coconut husk is an important agricultural waste in Malaysia. Acoustic absorption coefficient of the fiber as a porous material is studied in this paper. Two types of fiber are investigated, fresh from wet market and industrial prepared mixed with binder. Moreover two analytical models, namely; Delany–Bazley and Biot–Allard are used for analysis. Experimental measurements in impedance tube are conducted to validate the analytical outcomes. Results show that fresh coir fiber has an average absorption coefficient of 0.8 at f > 1360 Hz and 20 mm thickness. Increasing the thickness is improved the sound absorption in lower frequencies, having the same average at f > 578 Hz and 45 mm thickness. Delany–Bazley technique can be used for both types of fiber while Biot–Allard method is compensated for the industrial prepared fiber considering the binder additive. This form generally shows poor acoustical absorption in low frequencies. Inevitably, fiber has to be mixed with additives in commercial use to enhance its characteristics such as stiffness, unti-fungus and flammability. Hence other approaches such as adding air gap or perforated plate should be used to improve the acoustical properties of industrial treated coir fiber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号