首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1440篇
  免费   57篇
  国内免费   11篇
化学   985篇
晶体学   15篇
力学   69篇
数学   157篇
物理学   282篇
  2024年   7篇
  2023年   24篇
  2022年   55篇
  2021年   57篇
  2020年   57篇
  2019年   69篇
  2018年   64篇
  2017年   46篇
  2016年   70篇
  2015年   49篇
  2014年   82篇
  2013年   170篇
  2012年   123篇
  2011年   89篇
  2010年   73篇
  2009年   52篇
  2008年   55篇
  2007年   46篇
  2006年   48篇
  2005年   22篇
  2004年   29篇
  2003年   17篇
  2002年   15篇
  2001年   16篇
  2000年   21篇
  1999年   11篇
  1998年   6篇
  1997年   9篇
  1996年   4篇
  1995年   10篇
  1994年   11篇
  1992年   4篇
  1989年   3篇
  1987年   9篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
  1979年   6篇
  1978年   8篇
  1977年   3篇
  1976年   6篇
  1974年   7篇
  1971年   2篇
  1966年   2篇
  1960年   5篇
  1959年   3篇
  1958年   2篇
排序方式: 共有1508条查询结果,搜索用时 15 毫秒
241.
This study illustrates the applicability of dynamic light scattering (DLS)-based optical microrheology in generating new insights into the rheological response of dilute protein solutions as they start to form insoluble aggregates under the influence of a thermal stress. The technique is also shown to provide a quick method for measuring the viscosity in protein solutions. The optical microrheological technique, which is based on DLS with improved single scattering detection, is shown here to capture the rich dynamics in these systems, where traditional mechanical rheometry cannot be effectively employed due to low torque generation and high sample volume requirements and the more widely known diffusing wave spectroscopy microrheology technique is not desirable due to the required high probe particle concentrations The study illustrates the careful consideration which must be given to the tracer particle surface chemistry, tracer particle concentration and tracer particle size in order to extract out rheological responses that are truly representative of the underlying protein dynamics and microstructure. We outline a procedure for ensuring that the pitfalls inherent to this type of measurement are avoided.  相似文献   
242.
243.
ABSTRACT

We use full nematohydrodynamic simulations to study the statics and dynamics of monolayers of cholesteric liquid crystals. Using chirality and temperature as control parameters, we show that we can recover the two-dimensional blue phases recently observed in chiral nematics, where hexagonal lattices of half-skyrmion topological excitations are interleaved by lattices of trefoil topological defects. Furthermore, we characterise the transient dynamics during the quench from isotropic to blue phase. We then proceed by confining cholesteric stripes and blue phases within finite-sized tactoids and show that it is possible to access a wealth of reconfigurable droplet shapes including disk-like, elongated and star-shaped morphologies. Our results demonstrate a potential for constructing controllable, stable structures of liquid crystals by constraining 2D blue phases and varying the chirality, surface tension and elastic constants.  相似文献   
244.
By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of perfect and defected bilayer armchair graphene nanoribbons (BAGNRs) under finite bias. Two typical defects which are placed in the middle of top layer (i.e. single vacancy (SV) and stone wale (SW) defects) are examined. The results reveal that in both perfect and defected bilayers, the maximum current refers to β-AB, AA and α-AB stacking orders, respectively, since the intermolecular interactions are stronger in them. Moreover it is observed that a SV decreases the current in all stacking orders, but the effects of a SW defect is nearly unpredictable. Besides, we introduced a sequential switching behavior and the effects of defects on the switching performance is studied as well. We found that a SW defect can significantly improve the switching behavior of a bilayer system. Transmission spectrum, band structure, molecular energy spectrum and molecular projected self-consistent Hamiltonian (MPSH) are analyzed subsequently to understand the electronic transport properties of these bilayer devices which can be used in developing nano-scale bilayer systems.  相似文献   
245.
We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss–Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm–Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss–Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss–Bonnet and nonlinear parameters \(\alpha \) and b on the superconducting gap. We observe that, for various values of \(\alpha \) and b, the real part of the conductivity is proportional to the frequency per temperature, \(\omega /T\), as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature.  相似文献   
246.
In a cancelable iris recognition technique, all enrollment patterns are masked using a transformation function, and the invertibility process for obtaining the original data should not be possible. A novel cancelable iris authentication approach in the encrypted domain is presented in this paper. The double random phase encoding (DRPE) algorithm in the Fractional Fourier Transform (FrFT) Domain is utilized to generate the optical masked IrisCodes. For the transmitter side, two encryption keys (RPM1 and RPM2) are utilized, while the second phase mask is proposed to be the right iris feature vector of the same user. As a result, mixing the feature vectors of the left and right iris patterns of the same subject to an encrypted IrisCode results in enhancing the privacy and preserving the system performance. This proposed system success is attributed to the fact that the iris authentication issue is transformed to a key authentication process. Experimental results conducted on CASIA-IrisV3-Interval dataset achieve a significant gain for both privacy and performance proving the superiority of the proposed approach.  相似文献   
247.
In this research we analyzed the processes of J/ψ → ?f0(980) decay by calculating of three amplitude contributions as the electromagnetic (EM) contribution, short-distance (SD) contribution from the \(c\bar c\) annihilation at the wave function origin, and long-distance (LD) contribution from the open charm effects. We obtained the values of these contributions and calculated the branching ratio of this decay.  相似文献   
248.
We study perfect valley polarization in a molybdenum disulfide (MoS2) nanoribbon monolayer using two bands Hamiltonian model and non-equilibrium Green’s function method. The device consists of a one-dimensional quantum wire of MoS2 monolayer sandwiched between two zigzag MoS2 nanoribbons such that the sites A and B of the honeycomb lattice are constructed by the molecular orbital of Mo atoms, only. Spin-valley coupling is seen in energy dispersion curve due to the inversion asymmetry and time-reversal symmetry. Although, the time reversal symmetry is broken by applying an external magnetic field, the valley polarization is very small. A valley polarization equal to 46% can be achieved using an exchange field of 0.13 eV. It is shown that a particular spin-valley combination with perfect valley polarization can be selected based on a given set of exchange field and gate voltage as input parameters. Therefore, the valley polarization can be detected by detecting the spin degree of freedom.  相似文献   
249.
Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed In Ga N/Ga N quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily.  相似文献   
250.
In this paper, a new model is proposed for manipulating the Kerr nonlinearity of right-hand circular probe light in a monolayer of graphene nanostructure. By using the density matrix equations and quantum optical approach, the third-order susceptibility of probe light is explored numerically. It is realized that the enhanced Kerr nonlinearity with zero linear absorption can be provided by selecting the appropriate quantities of controllable parameters, such as Rabi frequency and elliptical parameter of elliptical polarized coupling field. Our results may be useful applications in future all-optical system devices in nanostructures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号