Journal of Visualization - Airfoils are mostly inefficient in their off-design conditions. In order to improve the aerodynamic performance of airfoils in these conditions, using an optimized cavity... 相似文献
Nanocomposite membranes based on polyelectrolyte complex (PEC) of chitosan/phosphotungstic acid (PWA) and different types of montmorillonite (MMT) were prepared as alternative membranes to Nafion for direct methanol fuel cell (DMFC) applications. Fourier transform infrared spectroscopy (FTIR) revealed an electrostatically fixed PWA within the PEC membranes, which avoids a decrease in proton conductivity at practical condition. Various amounts of pristine as well as organically modified MMT (OMMT) (MMT: Cloisite Na, OMMT: Cloisite 15A, and Cloisite 30B) were introduced to the PEC membranes to decrease in methanol permeability and, thus, enhance efficiency and power density of the cells. X-ray diffraction patterns of the nanocomposite membranes proved that MMT (or OMMT) layers were exfoliated in the membranes at loading weights of lower than 3 wt.%. Moreover, the proton conductivity and the methanol permeability as well as the water uptake behavior of the manufactured nanocomposite membranes were studied. According to the selectivity parameter, ratio of proton conductivity to methanol permeability, the PEC/2 wt.% MMT 30B was identified as the optimum composition. The DMFC performance tests were carried out at 70 °C and 5 M methanol feed and the optimum membrane showed higher maximum power density as well as acceptable durability compared to Nafion 117. The obtained results indicated that owing to the relatively high selectivity and power density, the optimum nanocomposite membrane could be considered as a promising polyelectrolyte membrane (PEM) for DMFC applications. 相似文献
An experimental study on the pertraction of methylene blue (MB) through a supported liquid membrane (SLM) using a mixture of mono-(2-etylhexyl) ester of phosphoric acid (M2EHPA) and bis-(2-etylhexyl) ester of phosphoric acid (D2EHPA) and sesame oil as the liquid membrane (LM) was performed. Parameters affecting the pertraction of MB such as initial MB concentration, carrier concentration, feed phase pH, and stripping phase concentration were analyzed. Optimal experimental conditions for MB pertraction (permeability of 5.63 × 10?6) were obtained after a 7 h separation with the MB concentration in the feed phase of 80 mg L?1, D2EHPA/M2EHPA concentration in membrane phase of 40 vol. %, feed pH of 6, and acetic acid concentration in the stripping phase of 0.4 mol L?1. Kinetics of transport and stability of the SLM system were also studied and the mass transfer coefficient for this system was evaluated. Scanning electron microscopy (SEM) was used to morphologically characterize the membrane surface. 相似文献
Multiwalled carbon nanotubes were exposed to hydrothermal treatment for obtaining graphene oxide nanoribbons (GONRs). The fabricated graphene oxide nanoribbons have been morphologically and compositionally characterized via FE-SEM, XRD, and FT-IR techniques. The as-synthesized GONRs have been used as sorbent phase for headspace solid-phase microextraction of phthalate esters (PEs) from aqueous solutions. In this regard, the GC–FID analysis route has been used for quantification of PEs. The new SPME fiber shows remarkable analytical figures of merit including broad dynamic linear ranges, low limits of detection, as well as good stability and reasonable relative standard deviations for evaluation of PEs. The linearity of the method for analysis of PEs including DnBP, DnPP, DEHP, DEHA, BBP, and DMP was between the range of 0.05–100, 0.05–100, 0.1–100, 0.1–100, 0.2–100, and 0.5–100 μg L?1, respectively. The limits of detection (based on S/N?=?3) and correlation coefficients were found to be in the range of 0.02–0.2 μg L?1 and 0.9907–0.9952, correspondingly. The prepared GONR-coated SPME fiber shows larger extraction yield in comparison to pristine MWNTs and commercial PDMS SPME fibers. Furthermore, real sample analysis showed that there is no significant matrix effect for evaluation of PEs from environmental water samples and proposed method could be used for evaluation and determination of PEs from aqueous samples in a precise and accurate manner. The existence of functional groups, π–π interactions, as well as hydrogen bonding between adsorbent phase and PE analytes could be the reason for observing such a high extraction yield.
It is known that scalar-tensor gravity models can be studied in Einstein and Jordan frames. In this paper, a model of scalar-tensor gravity in Einstein's frame is considered to calculate the Lifshitz-like black hole solutions with different horizon topologies. Thermodynamic properties and first order van der Waals-like phase transition are studied, and it is found that the Lifshitz parameter affects the phase structure. In addition, thermal stability is investigated by using the behavior of heat capacity and various methods of geometrical thermodynamics. 相似文献
In recent decades, there has been an increasing trend toward the technical development of efficient energy system assessment tools owing to the growing energy demand and subsequent greenhouse gas emissions. Accordingly, in this paper, a comprehensive emergy-based exergoeconomic (emergoeconomic) method has been developed to study the biomass combustion waste heat recovery organic Rankine cycle (BCWHR-ORC), taking into account thermodynamics, economics, and sustainability aspects. To this end, the system was formulated in Engineering Equation Solver (EES) software, and then the exergy, exergoeconomic, and emergoeconomic analyses were conducted accordingly. The exergy analysis results revealed that the evaporator unit with 55.05 kilowatts and the turbine with 89.57% had the highest exergy destruction rate and exergy efficiency, respectively. Based on the exergoeconomic analysis, the cost per exergy unit , and the cost rate of the output power of the system were calculated to be 24.13 USD/GJ and 14.19 USD/h, respectively. Next, by applying the emergoeconomic approach, the monetary emergy content of the system components and the flows were calculated to evaluate the system’s sustainability. Accordingly, the turbine was found to have the highest monetary emergy rate of capital investment, equal to , and an output power monetary emergy of . Finally, a sensitivity analysis was performed to investigate the system’s overall performance characteristics from an exergoeconomic perspective, regarding the changes in the transformation coefficients (specific monetary emergy). 相似文献
The glass transition temperature dependence to heating rate and therefore the activation energy (ΔH?) of the glass transition of (60-x)V2O5–xNiO–40TeO2 oxide glasses with 0≤x≤20 (in mol%) were investigated at heating rates φ (=3 6, 9, 10 and 12 K/min) using differential scanning calorimetry (DSC). The heating rate dependence of Tg was used to investigate the applicability of different theoretical models describing the glass transition. Using the application of Moynihan and Kissinger et al. models to the present data, different values of (ΔH?) at each different heating-rate regions were obtained. The fragility parameter (m=ΔH?/R Tg) was ∼24.98 for x=10 mol%, suggesting that this glass may be considered as a rather strong glass (fragility index m∼>20 is an indication of fragile glass). Also the compositional dependence of Tg and ΔH? was investigated. 相似文献
In this paper, we study the polynomial integrability of natural Hamiltonian systems with two degrees of freedom having a homogeneous potential of degree k given either by a polynomial, or by an inverse of a polynomial. For k=−2,−1,…,3,4, their polynomial integrability has been characterized. Here, we have two main results. First, we characterize the polynomial integrability of those Hamiltonian systems with homogeneous potential of degree −3. Second, we extend a relation between the nontrivial eigenvalues of the Hessian of the potential calculated at a Darboux point to a family of Hamiltonian systems with potentials given by an inverse of a homogeneous polynomial. This relation was known for such Hamiltonian systems with homogeneous polynomial potentials. Finally, we present three open problems related with the polynomial integrability of Hamiltonian systems with a rational potential. 相似文献
Direct Numerical Simulation (DNS) of decaying isotropic 3D magnetohydrodynamic (MHD) turbulence based on the 10243-modes in a periodic box is used to study the statistical properties of turbulence. In this paper, the presence of intermittency in MHD turbulence is investigated through the analysis of the Probability Distribution Function (PDF) for Elsässer fields and total energy fluctuations. We observe that the PDFs of the Elsässer fields fluctuations display a strong non-Gaussian behavior at small scale, which can be ascribed to multifractality feature, while the PDFs of the total energy fluctuations have the same shape over all observed scales and are monofractal. The PDFs have stretched exponential tail and satisfy the function P(|δX|) ~ exp(?A|δX|μ). Numerically, we extract the exponent μ and find that it is constant for monofractal behavior as the length scale varies. To check the notion of self-similarity in the respective fluctuation, we apply the compensated structure functions. 相似文献