首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1008篇
  免费   75篇
  国内免费   21篇
化学   794篇
晶体学   2篇
力学   64篇
数学   105篇
物理学   139篇
  2024年   2篇
  2023年   6篇
  2022年   34篇
  2021年   48篇
  2020年   85篇
  2019年   63篇
  2018年   81篇
  2017年   50篇
  2016年   91篇
  2015年   70篇
  2014年   88篇
  2013年   124篇
  2012年   86篇
  2011年   73篇
  2010年   63篇
  2009年   40篇
  2008年   36篇
  2007年   19篇
  2006年   13篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1990年   2篇
  1988年   1篇
  1981年   2篇
排序方式: 共有1104条查询结果,搜索用时 31 毫秒
151.
The antibiotic pipeline has failed to keep pace with the rise of multidrug resistant tuberculosis and extensively drug-resistant tuberculosis pathogens. Naturally occurring peptides provide a rich source of lead compounds for developing novel pharmaceuticals with high selectivity and potency. Given the vast number of naturally-occurring bioactive cyclic peptides identified so far, the following digest highlights several cyclic peptides, discovered in the preceding decade, that exhibit promising activity against Mycobacterium tuberculosis.  相似文献   
152.
153.
Pigmented purpuric dermatosis (PPD) is a skin disorder mainly seen in the lower limbs. The nanofibrous web has been shown to be an appropriate alternative for the treatment of skin diseases as a drug delivery vehicle. In this study, sodium alginate (SA)/polyethylene oxide (PEO) nanofibers containing vitamin C (VC) were fabricated using both blended electrospinning and core/shell electrospinning. The resultant nanofibers were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. Enhancing the VC content resulted in increasing the nanofibers diameter. Also, the degradation rate and drug release were investigated. Drug release was evaluated using the in vitro dissolution and permeation method. The degradation rate and the drug release of the core/shell nanofibers were found to be lower than those of the blended nanofibers. The drug release of the extended nanofibers followed a different pattern, indicating that the extension of the nanofibers could be a promising way to control the drug release.  相似文献   
154.
Journal of Thermal Analysis and Calorimetry - High thermal conductivity in phase change materials (PCM) is preferred in thermal energy storage (TES) systems. Carbon additives are considered as...  相似文献   
155.
Stretchable self‐healing urethane‐based biomaterials have always been crucial for biomedical applications; however, the strength is the main constraint of utilization of these healable materials. Here, a series of novel, healable, elastomeric, supramolecular polyester urethane nanocomposites of poly(1,8‐octanediol citrate) and hexamethylene diisocyanate reinforced with cellulose nanocrystals (CNCs) are introduced. Nanocomposites with various amounts of CNCs from 10 to 50 wt% are prepared using solvent casting technique followed by the evaluation of their microstructural features, mechanical properties, healability, and biocompatibility. The synthesized nanocomposites indicate significantly higher tensile modulus (approximately 36–500‐fold) in comparison to the supramolecular polymer alone. Upon exposure to heat, the materials can reheal, but nevertheless when the amount of CNC is greater than 10 wt%, the self‐healing ability of nanocomposites is deteriorated. These materials are capable of rebonding ruptured parts and fully restoring their mechanical properties. In vitro cytotoxicity test of the nanocomposites using human dermal fibroblasts confirms their good cytocompatibility. The optimized structure, self‐healing attributes, and noncytotoxicity make these nanocomposites highly promising for tissue engineering and other biomedical applications.  相似文献   
156.
Meccanica - In the present study, the effects of wall roughness on the dynamic of laminar electro-osmotic flow (EOF) between two parallel plates have been investigated numerically. The governing...  相似文献   
157.

This article studies buoyancy-driven natural convection of a nanofluid affected by a magnetic field within a square enclosure with an individual conductive pin fin. The effects of electromagnetic forces, thermal conductivity, and inclination angle of pin fin were investigated using non-dimensional parameters. An extensive sensitivity analysis was conducted seeking an optimal heat transfer setting. The novelty of this work lies in including different contributing factors in heat transfer analysis, rigorous analysis of design parameters, and comprehensive mathematical analysis of solution domain for optimization. Results showed that magnetic strength diminished the heat transfer efficacy, while higher relative thermal conductivity of pin fin improved it. Based on the problem settings, we also obtained the relative conductivity value in which the heat transfer is optimal. Higher sensitivity of heat transfer was, though, noticed for both magnetic strength and fin thermal conductivity in comparison to fin inclination angle. Further studies, specifically with realistic geometrical configurations and heat transfer settings, are urged to translate current findings to industrial applications.

  相似文献   
158.
Journal of Solid State Electrochemistry - High selectivity and low impedance are preferred properties for neural microelectrodes. The localized and controlled release of drugs from the...  相似文献   
159.
The European Physical Journal C - We consider a $$U(1)_{B-L}$$ model with a $$Z^\prime $$ portal Dirac fermion dark matter (DM) $$\chi $$ of low mass which couples very weakly to the $$B - L$$...  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号