首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1031篇
  免费   55篇
  国内免费   21篇
化学   792篇
晶体学   2篇
力学   65篇
数学   108篇
物理学   140篇
  2024年   4篇
  2023年   7篇
  2022年   39篇
  2021年   50篇
  2020年   86篇
  2019年   63篇
  2018年   80篇
  2017年   50篇
  2016年   91篇
  2015年   70篇
  2014年   88篇
  2013年   120篇
  2012年   84篇
  2011年   73篇
  2010年   63篇
  2009年   40篇
  2008年   36篇
  2007年   19篇
  2006年   13篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1990年   2篇
  1988年   1篇
  1981年   2篇
排序方式: 共有1107条查询结果,搜索用时 31 毫秒
991.
A simple and efficient method based on hollow fiber protected headspace liquid-phase in conjunction with high performance liquid chromatography has been introduced for extraction and determination of three residual monomers (2-ethylhexyl acrylate (EHA), vinyl acetate (VA), glycidyl methacrylate (GM)) in polymer latex. Using this methodology, the analytes of interest extracted from a sample are led into organic solvent located inside the porous hollow fiber membrane. Initially, several experimental parameters were controlled and optimized and the optimum conditions were reached with 8 cm neatly cut hollow fibers containing heptanol, which were exposed to the headspace of a 12 mL sample solution containing 20% (w/v) NaCl thermostated at 110 °C and stirred at 800 rpm for 20 min. Finally, 20 μL of the extraction solution was withdrawn into a syringe and injected into HPLC for analysis. The calibration curves were linear (r2 ≥ 0.994) over the concentration range of 0.05-10 mg L−1 for VA and 0.02-10 mg L−1 for other analytes. The relative standard deviation (RSD%) for three-replicate extractions and measurements was below 8.6%. The limits of detection of this method for quantitative determination of the analytes were found within the range of 0.005 to 0.011 mg kg−1 with the enrichment factors within the 5-164 range. The method was successfully applied for determination of residual monomers in polymer latex.  相似文献   
992.
ABSTRACT: BACKGROUND: This study aims to investigate the influence of different stirring times on antibacterial activity of silver nanoparticles in polyethylene glycol (PEG) suspension. The silver nanoparticles (Ag-NPs) were prepared by green synthesis method using green agents, polyethylene glycol (PEG) under moderate temperature at different stirring times. Silver nitrate (AgNO3) was taken as the metal precursor while PEG was used as the solid support and polymeric stabilizer. The antibacterial activity of different sizes of nanosilver was investigated against Gram-positive [Staphylococcus aureus] and Gram-negative bacteria [Salmonella typhimurium SL1344] by the disk diffusion method using Mueller-Hinton Agar. RESULTS: Formation of Ag-NPs was determined by UV-vis spectroscopy where surface plasmon absorption maxima can be observed at 412-437 nm from the UV-vis spectrum. The synthesized nanoparticles were also characterized by X-ray diffraction (XRD). The peaks in the XRD pattern confirmed that the Ag-NPs possessed a face-centered cubic and peaks of contaminated crystalline phases were unable to be located. Transmission electron microscopy (TEM) revealed that Ag-NPs synthesized were in spherical shape. The optimum stirring time to synthesize smallest particle size was 6 hours with mean diameter of 11.23 nm. Zeta potential results indicate that the stability of the Ag-NPs is increases at the 6 h stirring time of reaction. The Fourier transform infrared (FT-IR) spectrum suggested the complexation present between PEG and Ag-NPs. The Ag-NPs in PEG were effective against all bacteria tested. Higher antibacterial activity was observed for Ag-NPs with smaller size. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field. CONCLUSIONS: Ag-NPs were successfully synthesized in PEG suspension under moderate temperature at different stirring times. The study clearly showed that the Ag-NPs with different stirring times exhibit inhibition towards the tested gram-positive and gram-negative bacteria.  相似文献   
993.
Understanding the response of drugs and their formulations to thermal stresses is an integral part of the development of stable medicinal products. In the present study, the thermal degradation of two drug samples (cetirizine and simvastatin) was determined by differential scanning calorimetery (DSC) and simultaneous thermogravimetery/differential thermal analysis (TG/DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the cetirizine occurs during two temperature ranges of 165–227 and 247–402 °C. The TG/DTA analysis of simvastatin indicates that this drug melts (at about 143 °C) before it decomposes. The main thermal degradation for the simvastatin occurs during two endothermic behaviors in the temperature ranges of 238–308 and 308–414 °C. The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of both the drug samples was verified. The results showed that as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Based on the values of activation energy obtained by ASTM E696 method, the values of activation energy for cetirizine and simvastatin were 120.8 and 170.9 kJ mol?1, respectively. Finally, the values of ΔS #, ΔH #, and ΔG # of their decomposition reaction were calculated.  相似文献   
994.
Electrochemical oxidation of levodopa (LD) as one of the most well-known neurotransmitters has been studied in the presence of some aniline derivatives. The electron transfer of LD is followed by two competitive reactions in the presence of these amines. The reactions are the Michael additions of side chain amine group of LD and/or aromatic amines to electrochemically generated o-quinone. There are two ECE mechanisms for both pathways and the competition between these inter and intramolecular reactions drastically depends on the pH of the medium. The pH dependence of reactions has been studied and the observed homogeneous rate constants of the reactions were estimated by digital simulation of cyclic voltammograms. The effect of aniline substituents was also studied with regard to their reactivities toward o-quinone of LD and the competitive reactions. Based on the obtained results, the products of intermolecular reactions are electroactive diphenylamine derivatives and their half-wave potentials depend on the nature of the aniline substituent.  相似文献   
995.
Crude oil contains a wide range of components with different chemical natures. Complex molecules consisting of associated groups of polyaromatic sheets and alkyl side chains are known as asphaltene. Asphaltenes are insoluble in solvents such as n-heptane and n-pentane and soluble in benzene and toluene. Asphaltene causes serious damages around the wellbore and the reservoir by reducing permeability and plugging the pores. This paper includes a natural depletion test, performed on the bottom-hole sample and on a carbonate-core sample. The main emphasis is to identify high potentially damaged conditions in the reservoir from the asphaltene precipitation point of view. Stability of asphaltene was investigated by Saturates-Asphaltenes-Resins-Aromatics (SARA) analysis; moreover, asphaltene composition, permeability reduction, and porosity reduction were measured using the natural depletion in 4500, 3000, 2500, and 1450 psig via both static and dynamic approaches. At the pressures above the bubble point, asphaltene precipitation decreases as pressure increases, and the solubility model becomes dominant; on the other hand, below the saturation pressure, decrease in the pressure would decreases asphaltene precipitation and let the colloidal model dominate. It can be concluded that the maximum amount of asphaltene precipitation occurs near the saturation pressure. Asphaltene precipitation was then investigated through the core sample, using a novel scaling equation.  相似文献   
996.
A novel poly(ionic liquid) (PIL) coated magnetic nanoparticle was synthesized by distillation-precipitation-polymerization of 1-vinyl-3- ethyl imidazolium in the presence of surface modified magnetic nanoparticles. The resulting catalyst was used as magnetic heterogeneous base catalyst for the synthesis of 4H-benzo[b]pyrans in water. The separation of the catalyst from the reaction mixture was readily achieved by simple magnetic decantation and the catalyst could be easily recycled without appreciable loss of catalytic activity. Because of polymer layers coated the surface of the magnetic nanoparticles, the catalyst has a high loading level of ionic liquid.  相似文献   
997.
We have described the primary studies on the conductivity and molecular weight of polyaniline in an electric field as it is used in a field effect experimental configuration. We report further studies on doped in-situ deposited polyaniline. First we have chemically synthesized polyaniline by ammonium peroxodisulfate in an acidic solution, with aqueous, organic and emulsion conditions at different times. Next, we measured mass and conductivity and obtained the best time of polymerizations. Then, we repeated these reactions under different electrical fields in constant time and measured mass and conductivity. The polyaniline is characterized by gel permeation chromatography (GPC), UV-visible spectroscopy and electrical conductivity. Polyanilines with high molecular weight are synthesized under electric field M w = (5.2–6.8) × 105, with M w/M n = 2.0–2.5. The UV-visible spectra of polyanilines oxidized by ammonium peroxodisulfate and protonated with dodecylbenzenesulfonic acid (PANi-DBSA), in N-methylpyrolidone (NMP) show a smeared polaron peak shifted into the visible. Electrical conductivity of polyaniline has been studied by four-probe method. The conductivity of the films of emeraldine protonated by DBSA cast from NMP is higher than 500 S/cm under (10 kV/cm2 of potential) electric field and shows an enhanced resistance to ageing. Next, we carried chemical polymerization at the best electric field at different times. Finally, the best time and amount of electric field were determined. Polymers synthesized under an electric field probably have better physical properties regarding the existence of less branching and high electric conductivity.  相似文献   
998.
The geometry, electronic structure, and catalytic properties of nitrogen‐ and phosphorus‐doped graphene (N‐/P‐graphene) are investigated by density functional theory calculations. The reaction between adsorbed O2 and CO molecules on N‐ and P‐graphene is comparably studied via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms. The results indicate that a two‐step process can occur, namely, CO+O2→CO2+Oads and CO+Oads→CO2. The calculated energy barriers of the first step are 15.8 and 12.4 kcal mol?1 for N‐ and P‐graphene, respectively. The second step of the oxidation reaction on N‐graphene proceeds with an energy barrier of about 4 kcal mol?1. It is noteworthy that this reaction step was not observed on P‐graphene because of the strong binding of Oads species on the P atoms. Thus, it can be concluded that low‐cost N‐graphene can be used as a promising green catalyst for low‐temperature CO oxidation.  相似文献   
999.
A nitrate? citrate gel was prepared from metallic nitrates and citric acid by sol? gel process and was further used to synthesize Ni0.5Zn0.5Fe2O4 nanocrystalline powder by auto‐combustion. Then, two novel 15 and 35% (w/w) magnetic Ni0.5Zn0.5Fe2O4 containing polyaniline nanocomposites, named as PANI‐Ni15 and PANI‐Ni35, respectively, were prepared via in‐situ polymerization of aniline in an aqueous solution containing proper amount of Ni0.5Zn0.5Fe2O4 magnetic powder. The incorporation of the nanopowders to PANI matrix was confirmed by X‐ray diffraction (XRD), IR and SEM. Synthesized PANI‐NiZn ferrite composite particles were subsequently added to an epoxy resin matrix to produce related nanocomposites. The morphological properties of these nanocomposite materials were investigated by SEM and TEM. The electromagnetic‐absorbing properties were studied by measuring the reflection loss in the frequency range of 8.0 to 12.0 GHz. Results showed the reflection loss of the PANI‐Ni35 composite is higher than pure polyaniline and PANI‐Ni15. The good reflection loss of the nanocomposites suggests their potential applicability as radar absorber.  相似文献   
1000.
Novel radiation shielding nanocomposites based on a conducting polymer were fabricated and investigated to determine their abilities in attenuation of X‐rays. Polypyrrole/Pb nanocomposites were prepared through chemical reduction of lead salt by a facile solution‐phase method using t‐BuOLi‐activated LiH and in situ chemical polymerization of pyrrole in the presence of dodecyl benzene sulfonic acid as dopant and surfactant and iron chloride as the oxidant. The morphology, composition, and electrical conductivity of resulting products were characterized by scanning electron microscopy, transmission electron microscopy, X‐ray diffraction analysis, energy‐dispersive X‐ray spectroscopy, fourier transform infrared spectroscopy, and standard four‐wire technique, respectively. In order to evaluate capability of nanocomposites in radiation shielding, X‐ray photon interaction parameters such as linear attenuation coefficient, attenuation percentage, and half‐value thickness were determined for the samples with different Pb loadings and thicknesses, at photon energies of 13.95, 17.74, 20.08, 26.34, and 59.50 keV. The investigation was carried out to explore the potential of polypyrrole/Pb nanocomposites as thin and light‐weight radiation shielding materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号