全文获取类型
收费全文 | 1030篇 |
免费 | 56篇 |
国内免费 | 21篇 |
专业分类
化学 | 792篇 |
晶体学 | 2篇 |
力学 | 65篇 |
数学 | 108篇 |
物理学 | 140篇 |
出版年
2024年 | 4篇 |
2023年 | 7篇 |
2022年 | 39篇 |
2021年 | 50篇 |
2020年 | 86篇 |
2019年 | 63篇 |
2018年 | 80篇 |
2017年 | 50篇 |
2016年 | 91篇 |
2015年 | 70篇 |
2014年 | 88篇 |
2013年 | 120篇 |
2012年 | 84篇 |
2011年 | 73篇 |
2010年 | 63篇 |
2009年 | 40篇 |
2008年 | 36篇 |
2007年 | 19篇 |
2006年 | 13篇 |
2005年 | 6篇 |
2004年 | 4篇 |
2003年 | 5篇 |
2002年 | 3篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1990年 | 2篇 |
1988年 | 1篇 |
1981年 | 2篇 |
排序方式: 共有1107条查询结果,搜索用时 15 毫秒
31.
A Mechanism‐Based Approach to Screening Metagenomic Libraries for Discovery of Unconventional Glycosidases 下载免费PDF全文
Seyed Amirhossein Nasseri Dr. Leo Betschart Daria Opaleva Dr. Peter Rahfeld Prof. Stephen G. Withers 《Angewandte Chemie (International ed. in English)》2018,57(35):11359-11364
Functional metagenomics has opened new opportunities for enzyme discovery. To exploit the full potential of this new tool, the design of selective screens is essential, especially when searching for rare enzymes. To identify novel glycosidases that employ cleavage strategies other than the conventional Koshland mechanisms, a suitable screen was needed. Focusing on the unsaturated glucuronidases (UGLs), it was found that use of simple aryl glycoside substrates did not allow sufficient discrimination against β‐glucuronidases, which are widespread in bacteria. While conventional glycosidases cannot generally hydrolyze thioglycosides efficiently, UGLs follow a distinct mechanism that allows them to do so. Thus, fluorogenic thioglycoside substrates featuring thiol‐based self‐immolative linkers were synthesized and assessed as selective substrates. The generality of the approach was validated with another family of unconventional glycosidases, the GH4 enzymes. Finally, the utility of these substrates was tested by screening a small metagenomic library. 相似文献
32.
Tungstate ions were successfully loaded onto triazine‐based ionic liquid‐functionalized magnetic nanoparticles through an anion exchange process. The use of triazine core for creating ionic liquid led to the immobilization of high amounts of WO42?. The resulting catalyst showed high activity and selectivity in the oxidation of sulfides to sulfoxides with H2O2 as a green oxidant at room temperature. In addition, due to the presence of ammonium groups in the catalyst structure, water dispersibility of the catalyst was increased. More important, the catalyst was magnetically recovered and reused for up to six runs without any marked decrease of activity and selectivity. Finally, easy gram‐scale oxidation of methylphenyl sulfide as well as fast separation of catalyst and product makes the protocol economical and industrially applicable. 相似文献
33.
Arefeh Dadras M. Reza Naimi‐Jamal Firouz Matloubi Moghaddam Seyed Ebrahim Ayati 《应用有机金属化学》2018,32(2)
Aryl halides and especially inactive aryl chlorides were coupled to benzenoid aromatic rings in a Suzuki–Miyaura coupling reaction in the absence of organic solvents and toxic phosphine ligands. The reaction was catalysed by a recoverable magnetic nanocatalyst, Pd@Fe3O4, in aqueous media. This method is green, and the catalyst is easily removed from the reaction media using an external magnetic field and can be re‐used at least 10 times without any considerable loss in its activity. The catalyst was characterized using scanning and transmission electron microscopies, thermogravimetric analysis, inductively coupled plasma spectroscopy, Fourier transform infrared spectroscopy, CHN analysis, X‐ray diffraction and vibrating sample magnetometry. 相似文献
34.
35.
Grape stilbenes are a well-known family of plant polyphenolics that have been confirmed to have many biological activities in relation to health benefits. In the present study, we investigated the effect of methyl jasmonate (MeJA) elicitor at four different concentrations (25, 50, 100 and 200 μM) in combination or not with high-level light irradiation (10,000 LUX) on a cell line obtained from the pulp of Vitis vinifera cv. Shahani. Our results showed that the stilbene synthesis pathway is inhibited by high-light conditions. A concentration of 50 μM MeJA was optimum for efficient production and high accumulation of total phenolics and total flavonoids as well as total stilbenoids. Furthermore, we showed that there is a significant negative correlation between the production of these metabolites and cell growth. These data provide valuable information for the future scale-up of cell cultures for the production of these very high value compounds in bioreactor system. 相似文献
36.
Geisheimer AR Huang W Pacradouni V Sabok-Sayr SA Sonier JE Leznoff DB 《Dalton transactions (Cambridge, England : 2003)》2011,40(29):7505-7516
A series of isomorphous M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Mn, Co, Ni, Zn; Cu is similar) coordination polymers was synthesized from the reaction of M(II) with KAu(CN)(4); they consist of octahedrally coordinated metal centres with four equatorial water molecules and trans-axial N-cyano ligands from [Au(CN)(4)](-) moieties, generating a linear 1-D chain of M(H(2)O)(4)[Au(CN)(4)]-units. An additional interstitial [Au(CN)(4)](-) unit forms AuN and hydrogen bonds with adjacent chains. The Cu(II) system readily loses water to yield Cu[Au(CN)(4)](2)(H(2)O)(4), which was not structurally characterized. The magnetic properties of these polymers were investigated by a combination of SQUID magnetometry and zero-field muon spin relaxation (ZF-μSR). Only weak antiferromagnetic interactions along the chains are mediated by the [Au(CN)(4)]-units, but the ZF-μSR data indicates that interchain interactions yield a phase transition to a magnetically ordered state for Cu[Au(CN)(4)](2)(H(2)O)(4) below 0.6 K, while for M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Co), depopulation of zero-field split Kramer's doublets to an effective "S = 1/2" ground state yields a transition to a spin-frozen magnetic state below 0.26 K. On the other hand, only a simple slowing-down of spins above 0.02 K is observed for the more weakly zero-field split M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Mn, Ni) complexes. 相似文献
37.
A fully integrated polydimethylsiloxane (PDMS)/modified PDMS membrane/SU-8/quartz hybrid chip was developed for protein separation using isoelectric focusing (IEF) mechanism coupled with whole-channel imaging detection (WCID) method. This microfluidic chip integrates three components into one single chip: (i) modified PDMS membranes for separating electrolytes in the reservoirs from the sample in the microchannel and thus reducing pressure disturbance, (ii) SU-8 optical slit to block UV light (below 300?nm) outside the channel aiming to increase detection sensitivity, and (iii) injection and discharge capillaries for continuous operation. Integration of all these components on a single chip is challenging because it requires fabrication techniques for perfect bonding between different materials and is prone to leakage and blockage. This study has addressed all the challenges and presented a fully integrated chip, which is more robust with higher sensitivity than the previously developed IEF chips. This chip was tested by performing protein and pI marker separation. The separation results obtained in this chip were compared with that obtained in commercial cartridges. Side-by-side comparison validated the developed chip and fabrication techniques. 相似文献
38.
Hashem Sharghi Omid Asemani Seyed Mohammad Hossein Tabaei 《Journal of heterocyclic chemistry》2008,45(5):1293-1298
TsOH/graphite and N,N‐dimethylaniline/graphite were found to be catalyst systems for condensation reaction of o‐phenylendiamine with different aldehydes to form benzimidazole derivatives under mild and simple conditions. The graphite was easily recovered by a simple extraction and could be reused without decrease of activity in the presence of fresh TsOH and N,N‐dimethylaniline. 相似文献
39.
40.
A variety of factors contribute to the complex course of inflammation. Microbiological, immunological and toxic agents can initiate the inflammatory response by activating a variety of humoral and cellular mediators. In the early phase of inflammation, excessive amounts of cytokines and inflammatory mediators are released. These factors activate, in addition to other signaling pathways, the lipid synthesis pathways, which play a crucial role in the pathogenesis of organ dysfunction. Arachidonic acid (AA), the precursor of pro-inflammatory eicosanoids, is released from membrane phospholipids by the action of phospholipase A(2) (PLA(2)), and is metabolized to prostaglandins (PGs) and leukotrienes (LTs) by the action of cyclooxygenase (COX) and lipoxygenase (LO) enzymes, respectively. Disordered activation of PLA(2), LO and COX enzymes have been implicated in many inflammatory diseases. PLA(2) is activated by phospholipase-A(2)-activating protein (PLAP) and LO by 5-lipoxygenase-activating protein (FLAP). The inducible form of COX-2 enzyme, which is usually not present under basal conditions, is induced in inflammation. In this article the function of these enzymes in eicosanoid synthesis, their regulation, and their implication in inflammatory disorders will be reviewed. The properties, function and regulation of the protein activators PLAP and FLAP will also be discussed. 相似文献