首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5252篇
  免费   247篇
  国内免费   33篇
化学   4061篇
晶体学   46篇
力学   149篇
数学   318篇
物理学   958篇
  2024年   5篇
  2023年   35篇
  2022年   109篇
  2021年   118篇
  2020年   101篇
  2019年   117篇
  2018年   90篇
  2017年   83篇
  2016年   184篇
  2015年   176篇
  2014年   219篇
  2013年   318篇
  2012年   483篇
  2011年   483篇
  2010年   297篇
  2009年   257篇
  2008年   405篇
  2007年   328篇
  2006年   285篇
  2005年   286篇
  2004年   234篇
  2003年   195篇
  2002年   211篇
  2001年   75篇
  2000年   77篇
  1999年   55篇
  1998年   42篇
  1997年   31篇
  1996年   17篇
  1995年   22篇
  1994年   15篇
  1993年   22篇
  1992年   12篇
  1991年   15篇
  1990年   8篇
  1989年   8篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   11篇
  1984年   11篇
  1983年   9篇
  1982年   9篇
  1979年   6篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1974年   4篇
  1973年   5篇
  1970年   4篇
排序方式: 共有5532条查询结果,搜索用时 0 毫秒
1.
A series of polyimides were synthesized from 2,2‐Bis(3,4‐dicarboxyphenyl)hexafluoropropane, 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane, and 4,4′‐oxydianiline by chemical imidization. The effects of the diamine ratios on the properties of the films were evaluated through the study of their thermal, electrical, and morphological properties. All the polymers exhibited better solubility in most of the organic solvents and hence were easily processable. Polyimides with more 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane exhibited better solubility and a low refractive index, which is highly desired for microelectronic applications. The dielectric constant and birefringence were strongly dependent on the fluorine content. With an increase in the fluorine substitution, both the dielectric constant and birefringence decreased. All the polymers exhibited high thermal stability (>400 °C). The absence of crystalline melting in differential scanning calorimetry and broad wide‐angle X‐ray diffraction patterns revealed the amorphous nature of the polymers, which was due to the presence of bulky CF3 groups and hinged ether linkages of the diamine component. The residual stress values decreased with an increase in the 4,4′‐oxydianiline content, and the results were in agreement with the dielectric constant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4303–4312, 2004  相似文献   
2.
Electrospinning of cellulose acetate (CA) in a new solvent system and the deacetylation of the resulting ultrafine CA fibers were investigated. Ultrafine CA fibers (∼2.3 μm) were successfully prepared via electrospinning of CA in a mixed solvent of acetone/water at water contents of 10–15 wt %, and more ultrafine CA fibers (0.46 μm) were produced under basic pH conditions. Ultrafine cellulose fibers were regenerated from the homogeneous deacetylation of ultrafine CA fibers in KOH/ethanol. It was very rapid and completed within 20 min. The crystal structure, thermal properties, and morphology of ultrafine CA fibers were changed according to the degree of deacetylation, finally to those of pure cellulose, but the nonwoven fibrous mat structure was maintained. The activation energy for the deacetylation of ultrafine CA fibers was 10.3 kcal/mol. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 5–11, 2004  相似文献   
3.
A signal registration strategy from micropatterned immunosensors that converts antigen-antibody binding reactions into electrochemical signals was demonstrated. An array-type micropatterned gold electrode on a silicon wafer was fabricated, containing two electrode geometries of rectangular (100 microm x 500 microm) and circular (r. 50 microm) types, exhibiting electrochemical characteristics of bulk and micro-electrodes, respectively. Ferritin was employed as a model analyte for immunosensing because it has an advantageous molecular structure for functionalization to the sensing interface, and is regarded as a general marker protein for tumors and cancer recurrence. With the fabricated and ferritin-functionalized immunosensors, biospecific interactions were performed with antiferritin antiserum and secondary antibody samples, followed by electrochemical signaling via an immunoprecipitation reaction by the label enzyme. Under the optimized affinity-surface construction steps and reaction conditions, both types of microfabricated electrodes exhibited well-defined calibration results as a function of the protein concentration in antiserum samples. Furthermore, circular-type micropatterned immunoelectrodes exhibited voltammetric characteristics of microelectrodes, which is advantageous in terms of sensor operation under a fixed potential and low signal drift during the signaling reaction compared with the bulk-type electrodes. The results support that the employed signaling method with the proposed immunosensor configuration is fit for sensor miniaturization and integration to future biomicrosystems.  相似文献   
4.
Porous zirconia particles are very robust material and have received considerable attention as a stationary phase support for HPLC. We prepared cellulose dimethylphenylcarbamate-bonded carbon-clad zirconia (CDMPCCZ) as a chiral stationary phase (CSP) for separation of enantiomers of a set of 14 racemic compounds in normal phase (NP) and reversed-phase (RP) liquid chromatography. Retention and enantioselectivity on CDMPCCZ were compared to those on CDMPC-coated zirconia (CDMPCZ) to see how the change in immobilization method of the chiral selector affects the retention and chiral selectivity. In NPLC, retention was longer and the number of resolved racemates was smaller on CDMPCCZ than on CDMPCZ. However, chiral selectivity factors for some resolved racemates were better on CDMPCCZ than on CDMPCZ. The longer retention on CDMPCCZ is likely due to strong, non-chiral discriminating interactions with the carbon layer on CDMPCZ. In RPLC only two racemates were resolved on CDMPCCZ, but retention times were shorter than, and resolutions were comparable to, those in NPLC, indicating a potential for improving chromatographic performance of the CDMPCCZ column in RPLC with optimized column preparation and separation conditions.  相似文献   
5.
Mesoporous polymer microspheres with gold (Au) nanoparticles inside their pores were prepared considering their surface functionality and porosity. The Au/polymer composite microspheres prepared were characterized by transmission electron microscope (TEM), X‐ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) techniques. The results showed that the adsorption of Au nanoparticles could be increased by imparting the pore structure and surface‐functional groups into the supporting polymer microspheres (in this study, poly (ethylene glycol dimethacrylate‐co‐acrylonitrile) and poly (EGDMA‐co‐AN) system). Above all, from this study, it was established that the porosity of the polymer microspheres is the most important factor that determines the distribution and adsorption amount of face‐centered cubic (fcc) Au nanoparticles in the final products. Our study showed that the continuous adsorption of Au nanoparticles with the aid of the large surface area and surface interaction sites formed more favorably the Au/polymer composite microspheres. The BET measurements of Au/poly(EGDMA‐co‐AN) composite microspheres reveals that the adsorption of Au nanoparticles into the pores kept the pore structure intact and made it more porous. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5627–5635, 2004  相似文献   
6.
7.
Electron paramagnetic resonance (EPR) spectra of powder and oriented films of montmorillonite, hectorite, and saponite intercalated with [Cu(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) exhibit three components: an orientation-dependent component without hyperfine features, an orientation-dependent component with hyperfine features, and an orientation-independent component without hyperfine feature. EPR spectra of [Cu(cyclam)](2+)-saponite, which exhibit only two components and the best resolved hyperfine features, were simulated. The spectra indicate that a large portion of the saponite platelets are inclined to the glass surface, although they tend to align with their basal planes parallel to the glass surface. The orientation-dependent spectra could be simulated by introducing a Gaussian distribution with a standard deviation of 20 degrees for the inclination angle. The standard deviation may be used as a disorder parameter for the microcrystals assembled on glass plates. Spectral simulation also shows that the CuN(4) plane of [Cu(cyclam)](2+) is parallel to the clay layers. EPR spectra of some other partially oriented systems are also discussed.  相似文献   
8.
The separation of wide molecular mass (Mr) ranges of macromolecules using frit inlet asymmetrical flow field-flow fractionation (FI-AFlFFF) has been improved by implementing a combination of field and flow programming. In this first implementation, field strength (governed by the cross flow-rate through the membrane-covered accumulation wall) is decreased with time to obtain faster elution and improved detection of the more strongly retained (high Mr) materials. The channel outlet flow-rate is optionally held constant, increased, or decreased with time. With circulation of the flow exiting the accumulation wall to the inlet frit, the dual programming of cross flow and channel outlet flow could be implemented using just two pumps. With this flow configuration, the channel outlet flow-rate is always equal to the channel inlet flow-rate, and these may be programmed independently of the cross flow-rate through the membrane. FI-AFlFFF retains its operational advantage over conventional asymmetrical flow FFF (AFlFFF). Unlike conventional AFlFFF, FI-AFlFFF does not require time consuming, and experimentally inconvenient, sample focusing and relaxation steps involving valve switching and interruption of sample migration. The advantages of employing dual programming with FI-AFlFFF are demonstrated for sets of polystyrene sulfonate standards in the molecular mass range of 4 to 1000 kDa. It is shown that programmed FI-AFlFFF successfully expands the dynamic separation range of molecular mass.  相似文献   
9.
To isolate epigallocatechin gallate (EGCG) of catechin compounds from Korean green tea (Bosung, Chonnam), a C18 reversed-phase preparative column (250x22 mm) packed with packings of three different sizes (15, 40-63, and 150 microm) was used. The sample extracted with water was partitioned with chloroform and ethyl acetate to remove the impurities including caffeine. The mobile phases in this experiment were composed of 0.1% acetic acid in water, acetonitrile, methanol and ethyl acetate. The injection volume was fixed at 400 microl and the flow rate was increased as the particle size becomes larger. The isolation of EGCG with particle size was compared at a preparative scale and the feasibility of separation of EGCG at larger particle sizes was confirmed. The optimum mobile phase composition for separating EGCG was experimentally obtained at the particle sizes of 15 and 40-63 microm in the isocratic mode, but EGCG was not purely separated at the particle size of 150 microm.  相似文献   
10.
Highly ordered mesoporous silica can be regenerated from a mesoporous carbon CMK-3 that is a negative replica of mesoporous silica SBA-15, indicating reversible replication between carbon and inorganic materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号