首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89148篇
  免费   1701篇
  国内免费   1115篇
化学   32208篇
晶体学   899篇
力学   7187篇
综合类   41篇
数学   32792篇
物理学   18837篇
  2023年   173篇
  2022年   283篇
  2021年   309篇
  2020年   354篇
  2019年   318篇
  2018年   10639篇
  2017年   10446篇
  2016年   6490篇
  2015年   1275篇
  2014年   864篇
  2013年   1128篇
  2012年   4686篇
  2011年   11439篇
  2010年   6234篇
  2009年   6625篇
  2008年   7292篇
  2007年   9364篇
  2006年   816篇
  2005年   1876篇
  2004年   2028篇
  2003年   2332篇
  2002年   1428篇
  2001年   493篇
  2000年   550篇
  1999年   374篇
  1998年   354篇
  1997年   293篇
  1996年   376篇
  1995年   250篇
  1994年   206篇
  1993年   224篇
  1992年   192篇
  1991年   164篇
  1990年   121篇
  1989年   143篇
  1988年   117篇
  1987年   112篇
  1986年   104篇
  1985年   98篇
  1984年   69篇
  1983年   58篇
  1982年   61篇
  1981年   62篇
  1980年   63篇
  1979年   57篇
  1978年   42篇
  1914年   45篇
  1912年   41篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
In this paper, by capturing the atomic information and reflecting the behaviour governed by the nonlinear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single-walled carbon nanotubes (SWCNT’s) is established to describe the nonlinear stress-strain curve of SWCNT’s and to predict both the elastic properties and breaking strain of SWCNT’s during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT’s. The project supported by the National Natural Science Foundation of China (10121202, 90305015 and 10328203), the Key Grant Project of Chinese Ministry of Education (0306) and the Research Grants Council of the Hong Kong Special Administrative Region, China (HKU 7195/04E).  相似文献   
82.
Lithium-sulfur(Li-S)batteries are promising candidates for high density electrochemical energy storage systems.However,the poor conductivity of S and the shuttl...  相似文献   
83.
84.
Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process.Subject terms: Cell lineage, Chemotaxis  相似文献   
85.
本文使用光学多道分析器测定了氢原子光谱的计Hα、Hβ、Hγ、Hδ,谱线波长,利用最小二乘法处理测量数据:建立了测量数学模型,得到氢原子光谱里德伯常量RH,按国家计量技术规范JJF1059—1999标准对测量的不确定度进行了分析与评定。  相似文献   
86.
Luminescence nanothermometry makes non-invasive and real-time temperature readings possible in living animals. However,the spectral fluctuation in tissues and fluids, as well as the interaction between fluorophores and environment hinders accuracy of the thermometry. Here, we report a luminescence lifetime-based nanothermometry which specifically addresses this problem. A temporal based calibration(lifetime sensing) in the NIR range, an endogenous thermal response as well as a polymer encapsulation evading environmental factors, altogether help to pinpoint temperature in vivo. Thanks to the highly condensed NdYb ions in a well-protected tiny core-shell nanocrystal(overall 11 nm), a temperature sensitivity about 2.07% K~(-1)(with 5% Yb~(3+) doped nanoparticles) and an accuracy of 0.27 K(with 25% Yb~(3+) doped nanoparticles) in biological fluids are achieved.Hopefully, combining thermally activated energy transfer nanothermometer with anti-interference lifetime thermometry would provide a more accurate temperature measurement for biological and preclinical studies.  相似文献   
87.
The bud of Vaccinium dunalianum Wight has been traditionally consumed as health herbal tea by “Yi” people in Yunnan Province, China, which was locally named “Que Zui tea”. This paper studied the chemical constituents of five fractions from Vaccinium dunalianum, and their enzyme inhibitory effects of α-glucosidase and pancreatic lipase, antioxidant activity, and cytoprotective effects on H2O2-induced oxidative damage in HepG2 cells. The methanol extract of V. dunalianum was successively partitioned with petroleum ether (PF), chloroform (CF), ethyl acetate (EF), n-butanol (BF), and aqueous (WF) to obtain five fractions. The chemical profiling of the five fractions was analyzed by ultra-high-performance liquid chromatography coupled with a tandem mass spectrometry (UHPLC-MS/MS), and 18 compounds were tentatively identified. Compared to PF, CF, BF and WF, the EF revealed the highest total phenols (TPC) and total flavonoids (TFC), and displayed the strongest enzyme inhibition ability (α-glucosidase and pancreatic lipase) and antioxidant capacity (DPPH, ABTS and FRAP). Furthermore, these five fractions, especially EF, could effectively inhibit reactive oxygen species (ROS) production and cell apoptosis on H2O2-induced oxidative damage protection in HepG2 cells. This inhibitory effect might be caused by the up-regulation of intracellular antioxidant enzyme activity (CAT, SOD, and GSH). The flavonoids and phenolic acids of V. dunalianum might be the bioactive substances responsible for enzyme inhibitory, antioxidant, and cytoprotective activities.  相似文献   
88.
Pyroptosis is a programmed cell death widely studied in cancer cells for tumour inhibition, but rarely in dendritic cell (DC) activation for vaccine development. Here, we report the synthesis of sodium stabilized mesoporous aluminosilicate nanoparticles as DC pyroptosis modulators and antigen carriers. By surface modification of sodium-stabilized four-coordinate aluminium species on dendritic mesoporous silica nanoparticles, the resultant Na-IVAl-DMSN significantly activated DC through caspase-1 dependent pyroptosis via pH responsive intracellular ion exchange. The released proinflammatory cellular contents further mediated DC hyperactivation with prolonged cytokine release. In vivo studies showed that Na-IVAl-DMSN induced enhanced cellular immunity mediated by natural killer (NK) cells, cytotoxic T cells, and memory T cells as well as humoral immune response. Our results provide a new principle for the design of next-generation nanoadjuvants for vaccine applications.

Na-IVAl-DMSN acts as both antigen carriers and modulators to “hyperactivate” dendritic cells (DCs) via potassium (K+) efflux dependent pyroptosis, eventually leading to enhanced adaptive and innate immunity.  相似文献   
89.
Designing delocalized excitons with low binding energy (Eb) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high Eb of >300 meV. In this work, we report the achievement of a low Eb of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low Eb facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low Eb for efficient photocatalysis.

We report the construction of phenothiazine-based covalent organic frameworks, which exhibited diverse structures, the feasibility of bandgap engineering, and unprecedented ultralow exciton binding energy of ∼50 meV for photocatalytic polymerization.  相似文献   
90.
Scrophulariae Radix (SR) is one of the oldest and most frequently used Chinese herbs for oriental medicine in China. Before clinical use, the SR should be processed using different methods after harvest, such as steaming, “sweating”, and traditional fire-drying. In order to investigate the difference in chemical constituents using different processing methods, the two-dimensional (2D) 1H-13C heteronuclear single quantum correlation (1H-13C HSQC)-based metabolomics approach was applied to extensively characterize the difference in the chemical components in the extracts of SR processed using different processing methods. In total, 20 compounds were identified as potential chemical markers that changed significantly with different steaming durations. Seven compounds can be used as potential chemical markers to differentiate processing by sweating, hot-air drying, and steaming for 4 h. These findings could elucidate the change of chemical constituents of the processed SR and provide a guide for the processing. In addition, our protocol may represent a general approach to characterizing chemical compounds of traditional Chinese medicine (TCM) and therefore might be considered as a promising approach to exploring the scientific basis of traditional processing of TCM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号