首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   0篇
化学   50篇
晶体学   3篇
力学   3篇
数学   11篇
物理学   16篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2013年   12篇
  2012年   1篇
  2011年   3篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   3篇
  1979年   2篇
  1977年   1篇
  1973年   1篇
  1948年   1篇
  1937年   2篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
31.
It has been shown in [Nuclear Science and Engineering 93 (1986) 6799] that the finite difference discretization of Navier–Stoke's equation leads to the solution of N×N system written in the matrix form as My=B, where M is a quasi-tridiagonal having non-zero elements at the top right and bottom left corners. We present an efficient parallel algorithm on a p-processor hypercube implemented in two phases. In phase I a generalization of an algorithm due to Kowalik [High Speed Computation, Springer, New York] is developed which decomposes the above matrix system into smaller quasi-tridiagonal (p+1)×(p+1) subsystem, which is then solved in Phase II using an odd–even reduction method.  相似文献   
32.
We present a new symmetric five-diagonal finite difference method for computing eigenvalues of two-point boundary value problems involving a fourth-order differential equation.  相似文献   
33.
This paper describes a multiscale approach used to model polymer clay nanocomposites (PCNs) based on a new altered phase concept. Constant-force steered molecular dynamics (SMD) is used to evaluate nanomechanical properties of the constituents of intercalated clay units in PCNs, which were used in the finite element model. Atomic force microscopy and nanoindentation techniques provided additional input to the finite element method (FEM) model. FEM is used to construct a representative PCN model that simulates the composite response of intercalated clay units and the surrounding polymer matrix. From our simulations we conclude that, in order to accurately predict mechanical response of PCNs, it is necessary to take into account the molecular-level interactions between constituents of PCN, which are responsible for the enhanced nanomechanical properties of PCNs. This conclusion is supported by our previous finding that there is a change in crystallinity of polymeric phase due to the influence of intercalated clay units. The extent of altered polymeric phase is obtained from observations of a zone of the altered polymeric phase surrounding intercalated clay units in the "phase image" of PCN surface, obtained using an atomic force microscope (AFM). An accurate FEM model of PCN is constructed that incorporates the zone of the altered polymer. This model is used to estimate elastic modulus of the altered polymer. The estimated elastic modulus for the altered polymer is 4 to 5 times greater than that of pure polymer. This study indicates that it is necessary to take into account molecular interactions between constituents in nanocomposites due to the presence of altered phases, and furthermore provides us with a new direction for the modeling and design of nanocomposites.  相似文献   
34.
The Zimm and Bragg theory for helix-to-coil transitions has been suitably amended and applied to explain the two-step transition in the DNA triplex. The experimental measurements reported elsewhere have been successfully interpre- ted. The order-order and order-disorder transitions associated with the melting of the DNA triple helix, with and without netropsin binding, were characterized by the nucleation parameter, enthalpy change, sharpness of transition, and heat capacity. The destabilization of the triplex and stabilization of the duplex on netropsin binding are reflected in these characteristic parameters.  相似文献   
35.
It is axiomatic that efficient crystal production reflects upon the quality of structure. An empirical relation for mass proportions of two solvents in crystallization of Z‐Tyr‐Gly‐OEt shows a linear relationship. The dipeptide crystallizes in orthorhombic space group P212121, with cell parameters a = 5.0680(1) Å, b = 13.8650(1) Å and c = 28.2630(1) Å, Z = 4, Dcalc= 1.339Mg/m3, μ=0.820mm‐1, F000=848, CuKα = 1.5418 Å. The structure was solved by direct methods and final R1 and wR2 are 0.444 and 0.1276, respectively. The structure analysis reveals the trans conformation of the peptide unit with ω = ‐178.2(5)°, implying only a slight deviation from planarity. The torsion angles at glycine [ϕ, ψ = ‐84.4(7)°, 179.9(5)°] are characteristic of left‐handed poly glycine II helices. A number of N‐H…O, O‐H…O and C‐H…O hydrogen bondings play a role in stabilizing the molecules within unit cell. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
36.
37.
38.
39.
The theory of nonlinear chromatography has been advanced by the incorporation of recent results obtained by the theory of partial differential equations. The system of equations of the ideal model has been solved analytically in the case of a single component for which the equilibrium isotherm between the mobile and the stationary phases is given by a Langmuir equation. A series of computer programs has been written which permits the calculation of numerical solutions of the semi-ideal model. The properties of the solutions obtained are described and discussed for a one-component system (profile of high concentration bands of a pure compound eluted by a pure solvent), several two-component systems (elution of a pure compound band by a binary mobile phase, separation of a binary mixture eluted by a pure mobile phase), and three-component systems (separation of a binary mixture eluted by a binary solvent, displacement and separation of a binary mixture). Experimental results are reported which validate the conclusions derived from the numerical integration of the model. The conclusions of the work apply to all high-performance chromatographic procedures, i.e., to those where the kinetics of mass transfer are fast enough for the mobile and stationary phases always to be near equilibrium. More specifically, the contribution from the kinetics of the retention mechanism to the mass transfer resistance must itself be negligible. This clearly excludes affinity chromatography.  相似文献   
40.
In the present work, we have investigated the molecular orientation of phthalocyanine films deposited on polycrystalline gold. Three films built from the following molecules are investigated: phthalocyanine (H(2)Pc), cobalt phthalocyanine (CoPc) and copper phthalocyanine (CuPc). The films are prepared by spin coating and drop casting methods. Orientation analysis has been performed using polarization dependent Fourier transform infrared (FTIR) spectroscopy using transmission and grazing angle reflectance mode. The FTIR study suggests that each phthalocyanine film contains both alpha- and beta-phases. H(2)Pc based films demonstrate deposition method dependence on the molecular orientation, while the CuPc and CoPc films preserve their molecular orientation independent of deposition method. Grazing angle analysis also suggests that CoPc films show negligible preferred orientation irrespective of film deposition methods. In literature, the band at 878cm(-1) in CuPc has been assigned to out-of-plane bending of C-H. Our grazing angle experiments suggest that this band cannot be assigned to out-of-plane bending vibrations of C-H. Accurate band assignments are also described here for the phthalocyanine system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号